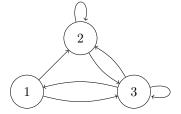
Mathématiques 8 et 9 – Algèbre Linéaire en L2 Informatique à l'ULCO

Examen du mardi 11 janvier 2022 de 13h30 à 16h30

Responsable: Isar Stubbe

Ni documents, ni calculatrices.


Mathématiques 8

- 1. (a) Échelonner la matrice $A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ -3 & -1 & 0 & 2 \\ 2 & 4 & -1 & 1 \\ -1 & 3 & 2 & 3 \end{pmatrix}$.
 - (b) En déduire une factorisation PA = LU.
 - (c) En déduire le déterminant de A.
 - (d) La matrice A, est-elle inversible? Justifier la réponse!
- 2. (a) Définir 'image' et 'noyau' d'une matrice $A \in \mathbb{R}^{m \times n}$.
 - (b) Expliquer l'utilité de ces deux notions pour la résolution d'un système linéaire AX = B. Supposons maintenant que $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times k}$ et $C \in \mathbb{R}^{m \times k}$ sont tels que AB = C.

 - (c) Parmi les assertions suivantes, choisir et démontrer l'unique assertion correcte:
 - i. $Im(A) \subseteq Im(C)$,
 - ii. $\operatorname{Im}(C) \subseteq \operatorname{Im}(A)$.
 - (d) Parmi les assertions suivantes, choisir et démontrer l'unique assertion correcte:
 - i. $Ker(B) \subseteq Ker(C)$,
 - ii. $Ker(C) \subseteq Ker(B)$.
- 3. Calculer le polynôme d'interpolation des points (-1,6), (0,2), (1,4) de \mathbb{R}^2 .

Mathématiques 9

- 4. Soit le système linéaire $\begin{cases} x + 2y = 4 \\ x + y = -2 \\ 2x + y = 2 \\ x y = 0 \end{cases}$
 - (a) Montrer qu'il n'y a pas de solution exacte.
 - (b) Calculer le rang de la matrice des coefficients.
 - (c) Calculer une solution approchée au sens des moindres carrés.
- 5. (a) Définir 'matrice symétrique' et 'matrice orthogonale'.
 - (b) Diagonaliser la matrice symétrique $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ par une matrice orthogonale, soit $A = BDB^t$.
- 6. (a) Donner la matrice d'adjacence A et la matrice stochastique M du graphe ci-contre.
 - (b) Ce graphe, est-il primitif? Est-il régulier? Justifier les réponses!
 - (c) Calculer le vecteur stationnaire S de la matrice M.
 - (d) Expliquer l'utilité du vecteur stationnaire.

