Géométrie affine, groupes classiques

Isar Stubbe

(Version du 22 janvier 2026 & 17:43)






Table des matiéres

1 Espaces affines|

[L.1 Sous-espace afhne|. . . . . . . . . . . .
[1.2  Sous-espace athine engendré| . . . . . .. . ... L Lo
[1.3 Repere athine] . . . . . . . . . . . e
1.4 Quelques résultats géométriques|. . . . . . . . . . ... o
MEExercices . . . . o oo
2 Applications affines|
2.1 Le groupe linéaire| . . . . . . . . . . . e e
2.2 Le groupe affine|. . . . . . . . . L
2.3  Le groupe des dilatations| . . . . .. ... ... ... ..
2.4 Encore quelques résultats geométriques|. . . . . . . . ... oo
R Exercices . . . . .o
BT Strics
3.1 Le groupe euclidien|. . . . . . . . . . ...
[3.2  Le groupe orthogonal|. . . . . . ... ... o oo
(3.3 Classification des isomeétries affines) . . . . . . .. .. ... ... 0L
3.4 De nouveau quelques résultats géomeétriques| . . . . . . .. .. ...
BE_Exercicesl . . . . . oot
[Références|
[Annales|

iii

RS N

10
18

33
33
37
41
44
50

69
69
72
80
86
94

113

115



Der wesentlichste Begriff, der bei den folgenden
Auseinandersetzungen notwendig ist, ist der

einer Gruppe von raumlichen Anderungen.

Le concept le plus essentiel, nécessaire dans les
discussions qui suivent, est celui de groupe de

transformations spatiales.

Felix Klein (1849-1925)
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1. Espaces affines

1.1. Sous-espace affine

Un espace vectoriel V' sur un corps K est un ensemble de vecteurs dont on peut calculer toute
combinaison linéaire : pour tout x1, ...,z dans V et tout aq,...,ap dans K, il existe un unique
> ;aix; dans V' et bien sur il faut des axiomes adéquats pour gérer cette opération. Un sous-
espace vectoriel de V' est un sous-ensemble S C V fermé pour les combinaisons linéaires. Tout
espace vectoriel V' admet une base, et chaque base est de méme cardinal : c’est la dimension
de V. Dans la suite, nous allons considérer uniquement des espaces vectoriels de dimension
finie.

Voici la notion cruciale en géométrie affine :

Définition 1.1.1. Soit un espace vectoriel V. La translation par a € V est lapplication
ta: V—=>V:x—x+a.

Notons qu’une translation n’est pas une application linéaire (sauf la translation par 0 € V)!

Cependant, toute translation est bijective, et il est facile de voir que :

Proposition 1.1.2. Soit un espace vectoriel V.. L’ensemble T(V') des translations est un sous-

groupe de Bij(V'), isomorphe a (V,+,0), et donc commutatif.

Par I'image directe de t,: V — V: x +— x + a, on peut translater tout sous-ensemble de V :
pour S C V on écrira S +a :=t,(S) ={z+a |z € S}

. ©S+a
O o

Pour les sous-espaces vectoriels de V, on a la situation suivante :

Lemme 1.1.3. Soit un espace vectoriel V. Pour des sous-espaces vectoriels E, F C V et des

vecteurs a,b €V on a :
1. E4a=F si et seulement st a € F,
2. E4+a=F+b siet seulement si E=F eta—beE,
3. pour toutbe E+aonak+a=FE+b.



1.1. Sous-espace affine

Démonstration. (1) Si E + a = E alors il existe g € F tel que zg +a = 0, et donc a = —xg
est aussi un élément de E. Réciproquement, si a € E alors pour tout z € E on a d'un coté
x+a€ Edonc E+aCE, et delautre x = (x —a) +a avec x —a € E donc E C E+a. (2) Si
E+a=F+balors E+ (a—b) = F. Puisque 0 € F, il existe un z9 € E tel que 29 +a —b = 0.
Ainsi a — b = —x( est aussi un élément de F; et dans ce cas, on a bien F' = EF+ (a —b) = E par

la premiére assertion. L’autre implication suit de la premiére assertion. (3) Suit directement. [J

Ce premier résultat justifie la notion suivante :

Définition 1.1.4. Soit un espace vectoriel V.. Un sous-espace affine A C V est l’image par
une translation (par n’importe quel élément de A) d’un (nécessairement unique) sous-espace
vector@'ellﬂ de V', que l’on appelle alors sa direction. La dimension d’un sous-espace affine est la

dimension de sa direction. Deux sous-espaces affines sont paralléles s’ils ont méme direction.

Explicitement, si E© C V est un sous-espace vectoriel et a € V', alors I’ensemble
A=t (E)={z+acV]|zeE}=FE+a
est, par définition, un sous-espace affine de direction E et point de passage a € A.

A=t,(E)=E+a

Autrement dit, A C V est un sous-espace affine s’il existe a € A tel que
E=t ,A)={r—a|lzecA}=A-a

est un sous-espace vectoriel ; et par le Lemme ci-dessus, ce sous-espace vectoriel est unique et

est donnée par £ = A — a pour tout a € A.

Il est commode d’écrire Ay pour la direction d’un sous-espace affine A C V; et si B C V est

un autre sous-espace affine, on écrira A // B lorsque Ay = By, c’est a dire, lorsque A et B sont

1. Cette définition implique en particulier qu’un sous-espace affine ne peut pas étre vide. Dans certaines

références on inclut 'ensemble vide comme sous-espace affine (“de dimension —17).
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paralléles.

\/B\AO—BO
o

B=By+b

Clairement, si dim (V') = n, alors pour tout k& < n il existe des sous-espaces affines de dimension
k ; et la dimension de tout sous-espace affine est au plus n. On parle de droites affines (plans af-
fines, hyperplans affines) lorsque la direction est une droite vectorielle (plan vectoriel, hyperplan
vectoriel). Les points de V sont exactement ses sous-espaces affines de dimension 0.

Notons bien la terminologie : tout élément v € V est d’une part un vecteur, et d’autre part
un point. Bien sir, c’est deux fois la méme chose! Mais en parlant de “vecteur” on insiste sur
la nature vectorielle de ’espace V', alors que le mot “point” évoque plutot la nature affine de
I'espace V. Par exemple, une droite affine est déterminée par deux points (distincts), alors que
deux vecteurs (indépendants) déterminent un sous-plan vectoriel. Par ailleurs, I’élément 0 € V
est un vecteur tres particulier (le neutre pour la somme!), alors que c¢’est un point comme tout
autre.

Il est maintenant presque banal de noter :

Proposition 1.1.5 (5e Postulat d’Euclide). Soit V' un espace vectoriel. Pour tout sous-

espace affine A CV et tout point a € V, il existe un unique sous-espace affine B CV paralléle

% K A
a AO

/A

A "0 0

Démonstration. On pose B = Ay + a. Si B’ est un autre sous-espace affine parallele & A, alors

a A et contenant a.

nécessairement B’ = Ag + b. Ainsi a € B’ si et seulement si a = x + b pour un certain xz € Ay,
donc a — b € Ap. Cela implique B = Ag+a= Ay +b= B’ O

Autrement dit, pour toute dimension k£ < n, on a une action du groupe T'(V) = (V,+,0) sur
I’ensemble des sous-espaces affines de dimension k de V' ; I’orbite d’un sous-espace affine A C V
est ’ensemble des sous-espaces affines paralleles & A. Pour les points de V' (i.e. pour k = 0),
l'action de T'(V') est simplement transitive : pour tout a,b € V il existe un unique t € T'(V') tel

que ta = b. (Voir les exercices pour un approfondissement de ce point de vue.)
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1.2. Sous-espace affine engendré

L’intersection de sous-espaces vectoriels est toujours un sous-espace vectoriel. Pour les sous-

espaces affines on a plutot :

Proposition 1.2.1. Une intersection de sous-espaces affines (A;); CV d’un espace vectoriel V

est soit vide, soit un sous-espace affine (dont la direction est alors l'intersection des directions).

Démonstration. Supposons que a € (); A;, alors par bijectivitéﬂ dety: V—->V:zr—x+aona
(N; 4i) —a =(;(A; — a), qui — en tant qu’intersection de sous-espaces vectoriels — est bien un

sous-espace vectoriel de V. O

Par conséquent, pour tout sous-ensemble non-vide X C V' d’un espace vectoriel, I'intersection
de tous les sous-espaces affines contenant X est 'unique plus petit sous-espace affine contenant
X. On lappelle le sous-espace affine engendré par X, noté (X), ou tout simplement (ay, ..., ax)
si X ={ao,...,ax}.

Le sous-espace affine engendré par deux points disticts a,b € V est au minimum de dimension
1 (car ¢a ne peut pas étre un singleton!). Pour que D C V soit une droite affine contenant a et
b, il faut que sa direction soit une droite vectorielle Dy = Kv telle que D = Dy + a. Mais alors
b € D implique que b = av + a pour un certain o # 0 (car a # b), et donc v = a~ (b — a) ; ainsi
nécessairement Dy = K(b—a) et D = K(b — a) + a. Autrement dit,

reD < dJacK:z=ab—-a)+a
<— do,feK:x=aa+pb e a+p=1.
Plus généralement on a :

Proposition 1.2.2. Soit un espace vectoriel V. Le sous-espace affine engendré par {ag, ..., ar} C
V est

k k
<a/0) "'70/]6) - {Z [e71¢7} ’ Oé(), -..,ak S K7Zaz = 1}.
=0 =0

Démonstration. Pour faciliter les notations, posons S = {3F (asa; | a; € K, Y% ja; = 1},

alors on a (attention aux indices des sommes dans les deux derniéres lignes!)

k k
S—ay = {(ZO@CLZ) — ap ’ aQ, ..., O € K,ZO@ = 1}
=0 =0

k k k
= {(Z%’%‘)—( ai)ao\ao,...,akEK,Zaizl}
=0 =0 =0
k k
= {Zai(ai — a0> ’ ag,...,op € K,apg=1— Zaz}
=0 =1
Zk (2
= {Z ai(ai - ao) | Oy, A € K}
=1

2. Pour toute fonction f: X — Y, I'image directe preserve les réunions quelconques; et si f est injective alors

I’image directe preserve aussi les intersections quelconques.
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On voit ainsi que S — ag est le sous-espace vectoriel engendré par {a; —ag, ..., ar —ag}, et donc S
est un sous-espace affine contenant {ay, ..., ay}. Par ailleurs, si A est un autre sous-espace affine
contenant {ay, ..., ar}, alors sa direction Ay = A — ag est un sous-espace vectoriel contenant en
particulier {a; — ag, ...,ax — ap}, et donc aussi tout S — ag. Ainsi on a S C Ay +ap = A4, et S

est donc bien l'intersection de tous les sous-espaces affines contenant {ao, ..., ax}. [l
Pour faciliter la discussion qui suit, introduisons la terminologie (classique) suivante :
Définition 1.2.3. Soit un espace vectoriel V' et {ag, ...,an} C 'V, alors lexpression

apag + ... + agarp  avec oo+ ...+ ar =1 dans K
est appelée le barycentreE] des points ag, ..., ay, de coefficients (ou de poids) oy, ..., .

Ainsi on peut résumer que le sous-espace affine engendré (ay, ..., ax) contient exactement tous
les barycentres (aussi appelés combinaisons affines) des points ag, ..., a.

Pour deux points distincts a # b, le sous-espace affine engendrée par a et b est bel et bien
I'unique droite affine passant par a et b. Pour simplifier les notations dans la suite, on écrira ab
pour cette droite affine. Sa direction est (ab)g = K (b — a), montrant immédiatement (& I'aide

du “5e Postulat”) que :

Corollaire 1.2.4. Soit un espace vectoriel V.. Pour a # b,c € V, lunique droite affine paralléle

a ab et passant par ¢ est K(b— a) + c.

Ces droites affines nous aident a caractériser les sous-espaces affines quelconques, confirmant

ainsi I'idée géométrique qu’'un sous-espace affine de V' est “rectiligne dans toute direction” :

Proposition 1.2.5. Soit V' un espace vectoriel sur un corps K de car(K) # 2. Alors un sous-
ensemble A CV est un sous-espace affine si et seulement si A # 0 et pour tout a #b € A aussi

la droite affine contenant a et b est dans A.

Démonstration. Pour tout a # b € A on a ab = (a,b) C A parce que la droite affine ab est
I'espace affine engendré par {a,b}. Réciproquement, prenons a € A # (); il suffit de vérifier que
A — a est un sous-espace vectoriel. (i) Bien stir, 0 =a —a € A —a. (ii) Pour 0 #2z € A—a et
a € Konaaussiaf(x+a)—a)+a=ar+a€c Adonc axr € A—a (et pour z =0 on est dans

le cas précédent).

A—a 0

3. D’apres les travaux de August Ferdinand Mobius (1790-1868), notamment son livre Der barycentrische

Calcul, publié en 1827 a Leipzig.
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(iii) Pour z # y € A—aona z+a,y+a € A et donc tout b = a((x+a)—(y+a))+(y+a) € A (c’est
la droite affine passant par z+a et y+a). Posant o = % on retrouve un point m = %(:L‘+y)+a €A,
et donc m —a = 3(z +y) € A — a, et ainsi (par le cas précédent) 2(m —a) =z +y € A — a.

(Pour x = y on est dans le cas précédent.) O

Dans cette démonstration on a utilisé que 2 # 0 dans K (pour calculer le “milieu” d’un segment).
Et en effet, ’énoncé est faux dans p.e. (F2)? : le sous-ensemble A = {0 = (0,0),a = (1,0),b =
(0,1)} contient les droites Oa, 0b et ab, mais n’est pas affine. (L’ensemble contient 0, donc est
un sous-espace affine si et seulement si c’est un sous-espace vectoriel ; mais alors il faudrait que

a+b e A, quod non.) On peut enlever cette restriction, avec un énoncé quelque peu adapté :

Proposition 1.2.6. Soit V un espace vectoriel. Alors un sous-ensemble A C 'V est un sous-
espace affine si et seulement si A # () et pour tout a # b,c € A aussi la droite affine paralléle a

ab et passant par c est dans A.

Démonstration. Rappelons que la droite affine parallele a ab et passant par ¢ est K(b—a)+c. Si
A C V est un sous-espace affine, alors pour tout a #b € Aonab—a € Ay, donc K(b—a) C Ay,
et donc la droite affine K(b— a) + c est bien dans A = Ay + ¢ pour tout ¢ € A. Réciproquement,
supposons que A # () contient non seulement toutes les droites affines passant par deux de
ses points, mais aussi toutes les droites affines paralleéles a celles-1a et passant par un troisieme

point de A. Les points (i) et (ii) de la démonstration précédente restent valables. On donne un

argument alternatif pour le point (iii), n’utilisant pas I’hypotheése 2 # 0.

T+a
/ /// ((x4+a)—a)+ (y+a)

Soit a € A; pour z,y € A—aonaz+a,y+ac Aetdoncaussi (x+a)—a)+ (y+a)€ A,
car c’est un point de la droite parallele a la droite passant par = + a et a, et passant par y + a.

Il suit que = + y € A — a comme voulu. (I

Pour a # b, c € V, la droite affine K (b—a)+c est un sous-ensemble du sous-espace affine (a, b, c).

Ainsi, avec ce qui précede, on peut reformuler la notion de sous-espace affine aussi comme :

Corollaire 1.2.7. Soit un espace vectoriel V.. Un sous-ensemble ) # A C V est un sous-espace
affine si et seulement si pour tout {ag,...,ar} C A aussi (ag,...,ar) C A; et il suffit de vérifier

cela pour k =2 en général, et pour k =1 lorsque car(K) # 2.

Autrement dit, un sous-ensemble non-vide A C V est un sous-espace affine si et seulement s’il

est fermé pour les barycentres (i.e. les combinaisons affines).
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Remarquons finalement qu’un barycentre de {0,a1,...,ax} est exactement la méme chose
qu’une combinaison linéaire de {ay, ..., a}, et donc le sous-espace affine (0,ay,...,ax) est en fait

exactement le sous-espace vectoriel engendré par {aq, ..., ax}.

1.3. Repere affine

Si une droite affine D C V contient trois points distincts a, b, ¢, alors D = (a, b, ¢), mais bien str

cette présentation de D n’est pas “optimale” au sens suivant :

Définition 1.3.1. Soit un espace vectoriel V. On dit que {ag,...,ar} C V est affinement libre

si aucun a;, € {ap,...,ar} n'est barycentre des autres points dans cet ensemble.

Si {ag,...,ar} C V est affinement libre, alors ces k + 1 points sont certainement distincts. Par
ailleurs, un singleton {a} C V est toujours affinement libre; et {a,b} C V est affinement libre
si et seulement si a # b, auquel cas le sous-espace affine engendré est la droite affine ab. Aussi,
{a,b,c} C V est affinement libre si et seulement s’il s’agit de trois points distincts et non-alignés
(c’est a dire, un triangle non-aplati), auquel cas ces points engendrent un sous-plan affine. En

général :
Proposition 1.3.2. Soit un espace vectoriel V.. Pour {ag, ...,ax} CV, les assertions suivantes
sont équivalentes :

1. {ag, ...,ax} est affinement libre,

2. il existe 0 < ig < k tel que {a; — a;, | i # i} est linéairement librelﬂ

3. pour tout 0 < iy <k, {a; —a;, | i # i} est linéairement libre,
4. le sous-espace affine (ag, ...,ax) est de dimension k,
)

. tout a € {ag, ...,ax) s’écrit d’une et une seule fagon comme barycentre des {ay, ..., ar}.
Démonstration. (2 < 3 < 4) Pour tout 0 < ig,i; < k, les sous-espaces vectoriels
(ag,...,ar) —a;, et (ag,...,ar) — a;

sont identiques, parce que ce sont deux fagons différentes de calculer la direction du sous-espace
affine (ao, ..., ax). Nous avons déja calculé que ces sous-espaces vectoriels sont engendrés (linéai-

rement) par, respectivement,

{ai — Q4 | 1 7& io} et {ai — A4y ‘ 1 7& il}.

Ainsi, {a; — a;, | © # io} contient k vecteurs linéairement indépendants si et seulement si le
sous-espace vectoriel (ao, ..., ag) — a;, est de dimension k, si et seulement si le sous-espace affine
(ag, ..., ax) est de dimension k, si et seulement si le sous-espace vectoriel (ag, ..., a;) — a;, est de

dimension k, si et seulement si {a; —a;, | ¢ # i1} contient k vecteurs linéairement indépendants.

4. “Linéairement libre” (ou linéairement indépendant) veut dire libre au sens de sous-espaces vectoriels.
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(1 = 2) Supposons que ag(a; — ag) + ... + ag(ax — ag) = 0. Si oy # 0 alors

k
1
ar = — (X aao — mar — .. — g1y 1)
ap N

montre que ay est un barycentre de {ay, ..., ax_1}. Cela est exclu par hypothese (1), donc o, = 0.
On peut répéter Pargument pour tout i« € {1,...,k}, pour conclure que ay = ... = a = 0, et
donc {a1 — ag, ..., ar — ap} est linéairement libre. On a donc montré (2) pour ig = 0.

(3 = 1) Si ag est un barycentre des aq, ..., ag, on a ag = aya1+...+agay avec ag+...+ag = 1.

Mais cela implique que
0= (0410,1 + ...+ akak) — (041 + ...+ ak)ao = 041((11 — CL()) + ...+ ak(ak — CL())

sans que tous les coefficients soient nuls (car leur somme vaut 1). Cela contredit ’hypotheése que
{a1 —ayp, ..., ax — ap} est linéairement indépendant, et donc ag ne peut pas étre un tel barycentre.
On répete Pargument pour chacun des a;, € {ag, ..., a}.

(1 = 5) Nous avons déja montré que 'espace affine engendré (ay, ..., ax) est ’ensemble des

barycentres de ses générateurs. Si jamais on a

k k k k
Zaiai = Zﬂiai avec Zai =1= Zﬁi,
i=0 i=0 i=0 i=0

et (supposons) ag # o, alors

ap = $( — i(ai - ﬁi)ai> avec — Eii(ai = B) =1
a— PN o @ — Po

montre que ag est un barycentre de {a1, ..., ax }, ce qui est en contradiction avec I’hypothése. On
répete 'argument pour tout a; # §;. Ainsi tout barycentre est unique.

(5 = 1) Tout élément a;, € {ap,...,ar} est le barycentre “trivial” a;, = Z?:o o;a; avec

a;, = 1 et tous les autres coefficients nuls. Par hypothese d’unicité, aucun élément de {ao, ..., ax }

ne peut donc étre barycentre des autres éléments. (I

Théoreme 1.3.3. Soit un espace vectoriel V. Un sous-ensemble A C 'V est un sous-espace affine
de dimension k si et seulement s’il existe {ag, ...,ar} C V affinement libre tel que A = {ay, ..., a).

On dit alors que {ag,...,ar} est un repére aﬁﬁnelﬂ de A.

Démonstration. Une implication a déja été montré. Réciproquement, si A est un sous-espace
affine de dimension k, alors I’espace vectoriel Ay admet une base {x1, ..., zx}. Fixant un a € A,

on sait donc que tout élément a’ € A = Ay + a s’écrit comme
a = (a1z1 + ... o) ta=oq(zr +a) + ... + ag(ar +a) + (1 — (a1 + ... + ag))a

et c’est bien un barycentre des éléments de ’ensemble {a,z1 + a, ...,z + a}. Cet ensemble est,

par construction, affinement libre et engendre (affinement) A. O

5. Attention : dans la littérature, ce terme est utilisé dans plusieurs sens différents (mais liés) ; insistons qu’ici

un tel “repere affine” sera utilisé pour déterminer les “coordonnées barycentriques” des points.
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Corollaire 1.3.4. Soit un sous-espace affine A CV de dimension k. Tout choix de repére affine

{ag, ...,ar} de A détermine, et est déterminé par, une bijection
A —— {(ag,..yap) € KFY | ag+ ..+, = 1}

envoyant a € A sur ces coordonnées barycentriques, i.e. l'unique tuple (ap, ..., ar) de somme 1

tel que a = agag + ... + apag.

En fixant un repeére affine d’'un sous-espace affine A C V', on peut “faire de la géométrie” dans
A sans référer a ’espace vectoriel ambient V' : car tout point de A s’exprime de maniére unique
comme barycentre des éléments du repere affine choisi. Cela est en particulier vrai pour ’espace
vectoriel V' en tant que sous-espace affine de lui-méme—c’est a dire, pour V en tant qu’espace
affine. Bien slir, un méme sous-espace affine A C V peut admettre plusieurs repéres affines (et
plus tard on va étudier comment on peut “changer de repere”) : cela donne la liberté de choisir
un repere affine adapté a telle ou autre situation géométrique.

Cependant, une légere généralisation du précédent nous sera utile : pour un nombre fini de

points pondérés et de poids total non-nul,
(ag, ), -, (ag, ) €V x K avec ag+ ...+ a # 0 dans K

on peut bien calculer le barycentre

@ +op—k L (apao+ .+ agay)
r= ——a ap = apa .o+ ogag),
a0+...+ak0 ozg—i—...—i—ak.k ag + ... + o 070 Wk

qui est donc toujours un élément de (ayg, ..., ar). Autrement dit, c’est le barycentre au sens de
la définition donnée auparavent, modulo une “renormalisation” des poids. Avec cette définition

élargie on voit facilement que :

Proposition 1.3.5. Le calcul barycentrique est

1. homogeéne : multiplier tous les poids d’une famille de points pondéréslﬂ par un méme facteur

ne change pas son barycentre,
2. unitaire : le barycentre d’un seul point pondéré est ce point lui-méme,

3. commutative : 'ordre des points pondérés dans une famille de points pondérés est sans

importance pour le calcul de son barycentre,

4. associative : pour calculer le barycentre d’une famille de points pondérés, toute sous-famille

de poids total non-nul peut étre remplacée par son barycentre pesé par son poids total.

Par conséquent, étant donné un repere affine {ao, ..., ax} d’un sous-espace affine A C V, tout

tuple (&, ..., &) € K*1 de somme non-nulle détermine un barycentre

1
T = m@oao + o+ Epag) € A;

6. Ici, comme plus loin, on veut toujours dire : une suite finie de points pondérés, de poids total non-nul.
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et un autre tuple (1o, ..., nx) € K**1 de somme non-nulle détermine le méme point si et seulement
si

il existe 0 # k € K : (00, s Mi) = K- (0, -+, Ek)-

Ceci est une relation d’équivalence entre tuples de somme non-nulle, et il convient de noter

(Co:nt&h)

lorsqu’on souhaite considérer le tuple (o, ..., &x) “a multiple non-nul pres”. Ainsi on a justifié :

Définition 1.3.6. Soit un repére affine {ag, ...,ar} d’un sous-espace affine A C V. Lorsqu’un
point x est le barycentre des points pondérés (ag,&o), ..., (ax, &) de poids total non-nul, on dit

que (& : ... : &) sont les coordonnées homogénes de x € A.

Ci-dessus, 'adjectif “homogene” veut dire “déterminé a multiple non-nul pres”. Parfois on parle
de coordonnées barycentriques homogenes, pour insister que le point x est déterminé par un bary-
centre. Pour contraster avec les coordonnées barycentriques homogeénes, on parle de coordonnées

barycentriques normalisées lorsqu’on impose que la somme des poids soit égale a 1.

1.4. Quelques résultats géométriques

Jusqu’a présent nous avons fait principalement de l'algebre linéaire—il est grand temps de
faire de la géométrie affine! C’est a dire, on souhaite maintenant étudier des configurations de
sous-espaces affines (points, droites, plans, ....) exprimées a l'aide des relations d’incidence et
du parallélisme. Bien siir on travaille toujours dans un espace vectoriel V' ambiant, mais on le
consideére plutét comme espace affine (sous-espace affine de lui-méme) : on parlera donc de points,
droites, plans, sans toujours préciser que ce sont des sous-espaces affines de I’espace vectoriel V.

Voici un tout premier exemple pour “confirmer l'intuition” :

Proposition 1.4.1. Chaque droite affine contient au moins deux points distincts, et deux points

distincts déterminent une et une seule droite affine.

Démonstration. Si D C V est une droite affine, alors sa direction Dg est un sous-espace vectoriel
de dimension 1, et ne peut se réduire au singleton {0}. Ainsi Dy continent au moins deux points
distincts, et par translation (bijective!) il en est de méme pour D. La deuxiéme partie a déja

été montré. |

De méme, “confirmons I'intuition” que deux droites dans un méme plan sont paralléles exacte-

ment quand elles n’ont aucun point en commun :

Proposition 1.4.2 (Incidence de deux droites coplanaires). L’intersection de deuz droites

affines coplanaires est soit une droite (si les droites sont identiques), soit un point (si les droites

10
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sont distinctes et non-paralléles), soit vide (si les droites sont distinctes et paralléles).

E /
y
D—E D
D

Démonstration. Supposons que D, E C A C V ou D et E sont des droites affines, et A est un plan
affine, dans un espace vectoriel V. Bien siir D = F implique que DN E est une droite. Supposons
désormais D # E, alors D N E est soit vide, soit un singleton (car si D et E ont deux points
distincts en commun, alors ces droites sont identiques, puisque deux points distincts déterminent
une et une seule droite affine). Si D // E, alors a € D N E implique D = Dy +a=Ey+a=E,
ce qui contredit 'hypotheése D # E'; ainsi DN E = (. Si D { E, alors Dy et Ey sont des droites
vectorielles distinctes dans le plan vectoriel Ag, et donc Dy ® Ey = Ap.

Prenonsd € Dete€ E,alorsd—e € A—e = Ay = Dy & Ey. 1l existe donc x € Dy et y € Ey
tel que d —e = x +y. Il suit alors que —z+d =y +e € (Dyp+d)N(Ey+e) =DNE, dou
DNE#0. O

Ce résultat peut étre généralisé a deux hyperplans dans un espace de dimension quelconque, ou
encore a deux sous-espaces affines supplémentaires.

Dans la pratique, une configuration de points (droites, plans, ...) donnés engendre un sous-
espace affine, et on peut souvent utiliser le calcul barycentrique (par rapport aux points donnés,
voire par rapport & un repere affine dudit sous-espace affine) pour étudier la configuration

donnée. Pour en donner le gofit, introduisons une notion classique.

Définition 1.4.3. L’isobarycentre (aussi appelé centroide) des points ay, ..., ar (dans un espace

vectoriel V' sur un corps K dans lequel k # 0) est le point x = %(cn + ...+ ag) € (a1, ...,ax).

L’isobarycentre de deux points distincts a et b est appelé leur milieu, soit m = %(a +b); c’est

/’/I(a.f.b/

a 2

un élément de la droite ab.
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1.4. Quelques résultats géométriques

Attention, cette notion n’a pas son sens usuel : nous ne pouvons pas dire que “m est équidistant
a a et b”, faute de notion de distance dans un espace vectoriel quelconque! Le dessin ci-dessus,
et tous les dessins qui suivent, sont des illustrations dans un plan affine réel (“le plan usuel”) de
résultats qui sont vrais pour n’importe quel corps K.

Un triangle (non-aplati) abc est la donnée de trois points non-alignés (i.e. affinement libres)
a, b et c; ces points sont les sommets du triangle, et les droitesm ab, bc et ca sont ses cotés.
Par définition, un triangle “vit” dans le plan affine engendré (a, b, c). Pour faire de la géométrie
affine du triangle, il est souvent commode d’utiliser les sommets du triangle comme repere affine
du plan contenant ce triangle. Illustrons cette idée avec quelques résultats classiques.

Une médiane d’un triangle abc est une droite reliant un sommet du triangle au milieu du
coté opposé. Une telle médiane est donc comprise dans le plan affine (a, b, ¢). On peut alors se

servir du repeére affine {a, b, ¢} pour démontrer :

Proposition 1.4.4 (Concourance des médianes d’un triangle). Soit un corps K de

car(K) € {2,3}. Les trois médianes d’un triangle s’intersectent da l'isobarycentre.

C

i(c+a) (b+c)

%(a—i—b)

Démonstration avec barycentres normalisés. On travaille dans le plan affine engendré par les
sommets du triangle abc. En calcul barycentrique, le “milieu” du segment ab est le point m =
2(a +b), et la médiane contenant c est donc la droite em = {a(m —c¢) + ¢ | & € K}. De la
méme maniére, on calcule n = 2(b+c) et an = {B(n—a) +a | B € K}, et p = 3(c+a) et
bp = {v(p —a) +a | v € K}. Maintenant on a = € ecm Nan N bp si et seulement s’il existe
a, B,v € K tels que

r=a(m—-c)+c=ga+ b+ (1 —-a)c

r=pFn—a)+a= (1—6)a+§b+§c

v=7(p—a)+ta=3ga+(l—-y)b+3c

Par unicité des coordonnées barycentriques on trouve a = § =y = %, douz = %a + %b—i— %c. (I
Par définition, I'isobarycentre du triangle abc est le point de coordonnées homogenes (1 :1: 1)

par rapport au repere {a,b,c}. Pour illustrer la différence entre coordonnées barycentriques

normalisées et homogenes, on peut donner une autre démonstration du résultat précédent :

7. On dit bien “droites”, car c’est la seule notion disponible en géométrie affine sur un corps quelconque ; pour

définir la notion de “segment”, il faudrait un corps ordonné (comme p.e. Q ou R).
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Démonstration avec barycentres homogénes. L’isobarycentre g du triangle abc est, par défini-
tion, le barycentre (au sens élargi) de (a,1),(b,1),(c,1). Mais si on note m le barycentre
de (a,1),(b,1), alors par associativité du calcul barycentrique, g est aussi le barycentre de
(m,2),(c,1), ce qui montre que g € mec, ou mc est la médiane reliant le sommet ¢ au mi-
lieu m du segment ab. De la méme maniere on voit que g appartient aux deux autres médianes

du triangle abc. L’isobarycentre est donc bien le point d’intersection des trois médianes. Il

Par ailleurs, ’écriture en coordonnées barycentriques montre également que, si g est l'isobary-
centre du triangle abc et m est le milieu du segment ab, alors g = %m + %c. Dans un plan affine
réel (donc K = R), cela veut dire que g se trouve “a deux tiers des sommets, et & un tiers des
milieux des cotés”.

Pour se convaincre de la nécessité des conditions sur le corps K, outre le fait que ’expression
de l'isobarycentre n’a pas de sens quand car(K) = 3, on peut facilement vérifier que le triangle
de sommets (0,0), (2,0) et (0,2) dans F3 x Fg a ses trois médianes paralleles.

Le résultat suivant était connu par Menelaoslﬂ d’Alexandrie (env. 70-140), qui ’a formulé et
démontré dans le cadre de la géométrie d’Euclide. Il y a beaucoup de démonstrations différentes ;
nous alons en donner une ici (en termes de barycentres), et une autre plus tard (en termes de

dilatations).

Proposition 1.4.5 (Théoréme de Menelaos). Soit un triangle abe, et x € be, y € ca et

z € ab trois points distincts des sommets du triangle. Ecrivons, en coordonnées barycentriques,
T = a;b+ fc Y = ayc+ Bya z = a,a+ B,b.

Alors les points x, y et z sont aligniés si et seulement si cizoryo, = — [ 8yB=.

Pour démontrer facilement ce résultat, développons d’abord un critére analytique (en termes de

coordonnées barycentriques) de colinéarité de trois points dans un plan affine :

Lemme 1.4.6. Soit un repére affine {a,b,c} d’un sous-plan affine A C V, et trois points

x,y,z € A avec x # y. Notons en coordonnées barycentriques normalisées
T = axa+/6xb+’7/mc Yy = aya+5yb+7yc z = O‘za“‘ﬁzb‘F'yzC-

Alors z € xy si et seulement si

oy Oy Oy

det | B, By B.|=0.
Yz Yy V=

8. En grec : “Mevéhaoc” ; en francais on écrit souvent “Ménélaiis”.
bl
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1.4. Quelques résultats géométriques

Démonstration. Puisque x # y, on a z € zy si et seulement si
il existe Kk : z = (1 — K)x + KyY.

Dans ce barycentre, on peut remplacer x, y et z par leurs expressions barycentriques, et la

condition devient équivalente a

aza+ Bb+v.c = (1—k)(aga+ Bzb+ vzc) + k(aya + Byb + yyc)
= (1= r)az +kay)a+ (1 = £)Be + KBy)b + (1 — K)vz + Kyy)e.

Par unicité des coordonnées barycentriques, on peut écrire cela encore par un systeme d’équa-

tions :
a, = (1 - K)oy + Koy

Bz =(1—K)Bs + KBy
Ve = (1= K)vz + Ky
Maintenant, si un tel K € K existe, alors la dépendence des colonnes exprimée par le systeme
ci-dessus implique que
ap Oy Oy
det | B, By B.| =0.
Yz Yy V2
Réciproquement, ce déterminant est nul si et seulement si les colonnes de la matrice sont dé-

pendantes (au sens linéaire!), c’est a dire,

Qg Qyy Q, 0
il existe (0,,6) # (0,0,0):0 | B, | +p| B, | +6[5. | =]0
Ve Yy Yz 0

Chaque colonne étant de somme 1 (car les éléments sont des coordonnées barycentriques), on

obtient par sommation des trois équations

o0y + pay + 0o, =0
Uﬁx +pﬁy +‘9Bz =0
oYz +pyy+67:=0

que o+ p+60=0.Si0 =0 alors

Qg Qyy 0
il existe (o,p) # (0,0): 0 [ Bx | +p| By | =0
Ve Yy 0

Mais alors o + p = 0, et donc 0 = —p # 0, d’ou z = y. Ceci contredit I'hypothese de 1'énoncé,

et donc on a toujours 6 # 0. Mais alors

Q, Oy Qy n 0
-0 —p -0 —p o+p —
Bl =g (Pe| Tg |Pv| oy gty =" =5 =1
Yz Va Yy
montre que K = —g est une solution au systéme exprimant que z = (1 — k)z + Ky. [l
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Démonstration du Théoreme de Menelaos. Par le lemme, les points
T = a;b+ Bc Y = oyc+ Bya z=oaza+ B,b

sont alignés si et seulement si

0 By oz
det o, 0 B, | =0,
B Ay 0
et par calcul de ce déterminant on trouve la condition nécessaire et suffisante de I’énoncé. [

La caractérisation de I’alignement des points z, y et z par un déterminant (cf. le lemme ci-dessus)
reste valable si on remplace les coordonnées barycentriques (normalisées) par des coordonnées
homogenes : puisque la nullité du déterminant n’est pas affectée lorsqu’on multiplie ses colonnes
par des constantes. Ainsi on peut aussi reformuler le Théoreme de Menelaos en utilisant des
coordonnées homogenes pour z, y et z.

Aussi le résultat suivant est un “grand classique” : il porte le nom du mathématicien italien
Giovanni Ceva (1647-1734), qui I’a formulé et démontré dans le cadre de la géométrie d’Euclide,
bien que ce résultat figure déja dans les travaux de Yusuf Al-Mutaman (...—1085), mathématicien
et roi de la taifa de Saragosse (en Espagne) a la fin du 1le siécle. Nous allons donner une

démonstration barycentrique de I’énoncé, le validant ainsi plus généralement en géométrie affine.

Proposition 1.4.7 (Théoréme de Ceva). Soit un triangle abe, et x € be, y € ca et z € ab

trois points distincts des sommets du triangle. Ecrivons, en coordonnées barycentriques,
T = azb+ Bre Yy = ayc+ Bya z = aa + B,b.

Alors les droites ax, by, cz sont concourantes ou paralléles si et seulement si a0, = 558,5..

)

Dans cet énoncé, on a affaire a des droites passant par un sommet d’un triangle donné : on
appelle cela une droite cévienne (ou tout simplement une cévienne) du triangle. Les médianes
d’un triangle sont des céviennes, mais aussi p.e. les bissectrices ou les hauteurs du triangle (dans

le cadre de la géométrie d’Euclide, bien entendu). Pour la suite il est utile de démontrer d’abord :
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1.4. Quelques résultats géométriques

Lemme 1.4.8. Soit un triangle abc et un point a # p € (a,b,c) de coordonnées homogénes
(a: B 1) par rapport au repére affine {a,b,c}. Alors la cévienne ap est paralléle au coté opposé
be si et seulement si 5+ = 0; et si les droites ne sont pas paralléles, alors leur (unique) point

d’intersection x € ap N bc est de coordonnées homogénes (0: 5 : 7).

Démonstration. Dans le plan affine A = (a, b, c), les droites ap et bc sont distinctes (car a ¢ be),
donc elles sont non-paralleles si et seulement si elles ont exactement un point d’intersection.
Mais un point z de coordonnées homogenes (o’ : 3 : /) est a la fois sur ap et sur be si et

seulement si

1 a o 0 0 &
det |0 g pB'| =0 et det|1 0 p'| =0,
0 v o 01 +

c’est a dire, quand
By —~v8 =0 et o =0.
Puisque a # p, on a nécessairement (3,7) # (0,0) (car le point de coordonnées homogenes
(ar: 0:0) est exactement a). Supposons que 8 # 0, alors o' = %ﬁ’ et on a ainsi
g
(o/:ﬁ’:*y’):(():ﬁlzBﬁ’):(O:ﬁ:'y).
Si B = 0 alors v # 0 et on utilise 5’ = g'y’ pour obtenir le méme résultat. Mais il s’agit ici de

coordonnées homogenes (du point ) si et seulement si la somme des coordonnées est non-nulle,

soit 8 + v # 0. Par contraposée on a donc ap // be si et seulement si §+ v = 0. O

Démonstration du Théoréme de Ceva. Remarquons d’abord que oy, oy, o, Bz, By et 3. sont
tous non-nuls, car par hypothese x, y et z sont distincts de a, b et c. Dans la suite, on pourra
donc diviser par ces a’s et (’s.

Si les droites ax, by et cz s’intersectent en un point p, que I'on suppose de coordonnées

homogenes (« : 8 : ) dans le repére {a, b, c}, alors par le lemme on a

(0:ay:8:)=(0:05:7) (By :0:0y) =(:0:7) (ay : B,:0)=(a:£:0)

et donc
ay oy Q

E By 5z_7

ce qui implique bien sir que azaya, = B;8,0..

By oa_y
«

L2
B
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Supposons maintenant que les droites ax, by et cz sont paralleles. Pour invoquer le lemme
ci-dessus, on va “couper le probléme en deux” (et 'argument dévelopé ci-apreés ne dépend pas

du “découpage” choisi!) :

Ainsi on peut voir ax comme une cévienne du triangle azc, parallele au coté zc; et by est une
cévienne du triangle bzc, parallele au c6té zc. Pour utiliser le lemme ci-dessus, on doit exprimer
x comme barycentre du repére {a,z,c}, et y comme barycentre du repére {b,c,z}. Mais de
z = aya + B,b on obtient b = —%a + B—lz,z et donc =z = —%a + %z + Byc (et la somme des
coefficients vaut 1). Le lemme dit qu’alors ax // zc si et seulement si %—:jt Bz = 0, soit 8,06, = —ay.
De méme, z = a,a + §,b implique a = a%z — g—zb, d’ou y = —ﬁg—fzb + %Z + ayc. Le lemme dit
que by // cz si et seulement si 3, = —ayo,. Il suit par multiplication que oz, = B,58,5..
Réciproquement, si les trois droites ax, by et cz ne sont pas paralléles, alors au moins deux
d’entre elles s’intersectent (en un unique point). Supposons que p, dont on note les coordonnées
homogenes dans le repere {a, b, c} par (a: f: ), est le point d’intersection de az et by, alors x
est le point d’intersection de ap et be, et y est le point d’intersection de by et ac, donc le lemme

précédent dit que

(0:az:B.)=(0:5:7) et (By :0:ay) = (:0:7),

c’est a dire,

w B w7
Bz v By «
Par la condition du théoréeme, o, oy, = B,8,03, on trouve alors que
@ PPy
/Bz Qg Oy B

et donc les coordonnées homogenes de z sont
(az: B :0) = (Bafy : 0gay : 0) = (a: 5:0).

Mais cela dit (encore par le lemme) que z est aussi le point d’intersection de cp et ab; ainsi les
trois droites ax, by et cz sont bel et bien concourantes en p. Somme toute, sous la condition
agayo, = [20y0:, les droites ax, by et cz sont soit paralleles, soit concourantes (en un seul
point). O
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Par ailleurs, dans le cas de concourance des céviennes, les coordonnées homogenes du point

d’intersection p sont bien (avec les notations de la démonstration)

a B

v )= (By 22 1) = (Bafy : awoyy 2 oy fBe).

(:Biy)=( a, B

(Ici on a utilisé que v # 0; le contraire impliquerait que = = b, ce qui est interdit par les
hypotheses.) Clairement, l’existence de 1'unique point d’intersection des trois médianes d’un
triangle abe (lorsque car(K) ¢ {2,3}) est un cas particulier du Théoréeme de Ceva : il suffit de
prendre pour x, y et z les milieux des segments bc, ca et ab.

Pour terminer, encore un dernier commentaire. Les théorémes de Menelaos et de Ceva se
ressemblent : Menelaos dit quand trois points se trouvent sur une méme droite, alors que Ceva
dit quand trois droites se rencontrent en un méme point. Et oui, les théoréemes de Menelaos
et de Ceva sont des conséquences d’un résultat plus général—voir [M. S. Klamkin, A. Liu,
Sitmultaneous Generalization of the Theorems of Ceva and Menelaus, Mathematics Magazine,
Vol. 65 (February 1992), pp. 48-52]. Mieux encore, reformulé en géométrie projective, ces deux
théoremes sont duaux 1'un de l'autre; et donc I'un implique 'autre, et vice versa—voir [J. R.
Silvester, Ceva = (Menelaus)?, The Mathematical Gazette, Vol. 84 (July 2000), pp. 268-271].

1.5. Exercices

Exercice 1.5.1 (Image directe et image réciproque). Montrer que, pour toute fonction
f: X = Y, 'image directe preserve les réunions quelconques; et si f est injective alors I'image
directe preserve aussi les intersections quelconques. Qu’en est-il alors pour I'image directe, resp.
I'image réciproque, d'une bijection ? (Ceci est utile pour les translations, et plus généralement

pour les automorphismes affines.)

Exercice 1.5.2 (Bijections). Montrer que, pour tout ensemble X, ’ensemble des bijections
Bij(X) est un groupe (pour la composition). Montrer que ce groupe agit “naturellement” sur
I'ensemble X, c’est a dire, que l'application Bij(X) x X — X: (f,z) — fz a les “propriétés

usuelles”.

Exercice 1.5.3 (Actions de groupe—abstraction du précédent). Rappeler la notion
d’action d’un groupe sur un ensemble (montrer I’équivalence de G x X — X et G — Bij(X)).
Etudier des propriétés (action fidele, libre, transitive ; orbit, point fixe, stabilisateur) et donner

des exemples simples.

Exercice 1.5.4 (Sous-groupes, quotients). Rappeler sous-groupe (normal) et quotient d’un
groupe G ; rappeler comment cela s’écrit dans une suite exacte courte N ——G—» Q). Donner
des exemples (sous-groupes de Bij(X), quotients de Z, ...) (On rencontrera plein d’exemples de

suites exactes courtes de groupes dans le cours.)

Exercice 1.5.5 (Morphismes entre actions). Etant donné une action de groupe Gx X — X,
montrer qu’un sous-groupe H C G induit toujours une action H x X — X, mais qu'un sous-

ensemble Y C X ne détermine pas toujours une action G x Y — Y. Formuler des conditions sur
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Y pour que l'inclusion ¢: Y < X induise une action G xY — Y. Rappeler la “bonne définition”

de morphisme équivariant entre G-actions.

Exercice 1.5.6 (Corps). Rappeler les notations des corps “usuels” : Q, R, C, F, = Z/(p), Fpr.
(Ce dernier n’a probablement pas encore été défini dans les cours d’algebre; ici on peut juste

mentionner son existence.)

Exercice 1.5.7 (Espaces vectoriels et applications linéaires). Soit V' un espace vectoriel
sur un corps K. Rappeler : base et dimension de V', sous-espace de V, intersection de sous-
espaces, somme (directe) de sous-espaces, formule de Grassmann. Application linéaire entre
espaces vectoriels, noyau, image, théoréeme du rang. Rappeler que toute base {ey,...,e,} de V
détermine, et est déterminée par, un isomorphisme linéaire V' — K™ ; rappeler la représentation

matricielle d’une application linéaire. (Tout cela est vu dans les cours de L1 et L2.)

Exercice 1.5.8 (Solutions d’une équation matricielle homogéne). Pour une matrice
A € K™ (avec éléments dans un corps K ), montrer que l'ensemble {X € K™ | AX = O}

est un sous-espace vectoriel de K™*!. Quelle est sa dimension ?

Exercice 1.5.9 (Equations cartésiennes d’un sous-espace vectoriel). Soit V' un espace
vectoriel sur un corps K, muni d’une base {ey,...,e,}. Montrer que tout sous-espace vectoriel
de dimension k£ < n est I’ensemble des = = ), x;e; dont les coordonnées sont les solutions d’un

systéme linéaire homogéne

a11x1 + ... + a1pnTy, = 0

A(n—k)121 T oo + A(n—f)nTn = 0
dont la matrice de coefficients est de rang n — k.

Exercice 1.5.10 (Somme de Minkowski). Pour deux sous-ensembles A, B C V d’un espace
vectoriel, on définit leur somme de Minkowski par A+ B = {a+b| a € A,b € B}. Montrer
que (P(V),+,{0}) est un monoide commutatif. A-t-on A+ (BUC) = (AUB)+ (AUC) et/ou
A+ (BNC)=(ANB)+ (ANC) pour tout A, B,C C V' ? (La translation d’un sous-ensemble

de V par un vecteur a € V' est un cas particulier de cette somme.)

Exercice 1.5.11 (Vectoriel parmi affine). Montrer qu’un sous-espace vectoriel de V' est

exactement un sous-espace affine passant par 0.

Exercice 1.5.12 (Parallélisme est une relation d’équivalence). Soit un espace vectorielle
V. Notons Aff(V) pour I'ensemble des sous-espaces affines de V', et Vec(V) pour I'ensemble
des sous-espaces vectoriels. Montrer que P'application Aff(V') — Vec(V): A — Ag est surjective
mais pas injective, puis montrer que la relation d’équivalence qu’elle détermine est exactement
le parallélisme. (Rappeler que toute surjection (ensembliste) détermine, et est déterminée par,

une relation d’équivalence.)
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Exercice 1.5.13 (Actions des translations). Soit un espace vectorielle V' de dimension n.
Notons Aff¥ (V) pour lensemble des sous-espaces affines de dimension k& < n. Montrer que,
pour toute translation t € T(V), 'image directe définit une bijection ¢: Aff*(V) — Aff*(V). En
déduire une action de groupe T'(V) x Afff (V) — Aff%(V). Cette action, est-elle transitive ? libre ?
(La réponse dépend de k.) Quelle est la relation d’équivalence sur Aff*(V') déterminée par cette

action de T(V) ? Mémes questions lorsqu’on remplace Aff¥(V) par Aff(V).

Exercice 1.5.14 (Définition d’espace affine par action). Soit un espace vectoriel V. Mon-
trer que le groupe T'(V) = (V,+,0) agit “naturellement” simplement transitivement sur ('en-
semble des points de) V. Réciproquement, lorsque (V,+,0) agit simplement transitivement sur
un ensemble X, montrer que X est, par transport de structure, un espace vectoriel isomorphe
a V (et que I'on peut choisir n’importe quel z € X comme vecteur nul). De plus, cet isomor-
phisme est équivariant pour les actions respectifs. (Plusieurs références (francaises) utilisent

cette équivalence pour définir ainsi un “espace affine X de direction V)

Exercice 1.5.15 (Solutions d’une équation matricielle non-homogéne). Pour des ma-
trices A € K™ et B € K™ ! (avec éléments dans un corps K), montrer que l’ensemble
{X € K™ | AX = B} est soit vide, soit un sous-espace affine de K"*!. Le cas échéant, donner

sa direction ainsi qu’'un point de passage, et sa dimension.

Exercice 1.5.16 (Equations cartésiennes d’un sous-espace affine). Soit V' un espace
vectoriel sur un corps K, muni d’une base {ey,...,e,}. Montrer que tout sous-espace affine de
dimension £ < n est ’ensemble des x = ), x;e; dont les coordonnées sont les solutions d’un

systéme linéaire (pas nécessairement homogene)

any + ... + apTy, = b

An—k)1T1 + oo T Qn—k)nTn = bk
dont la matrice de coefficients est de rang n — k.

Exercice 1.5.17 (Sous-espaces affines—Ile cas réel). Identifier (par une équation carté-
sienne) les sous-espaces affines de R™ lorsque n € {0,1,2,3}. (Pour R? on retrouve bien sfir les

équations des droites données dans le cours de Géométrie en L.2.)

Exercice 1.5.18 (Espaces finis). “Dessiner” les espaces F3, FZ, F2, et indiquer toutes les
droites (vectorielles et affines). Combien de points y a-t-il dans IFj 7 Combien de points y a-t-il

sur chaque droite dans [y 7 Combien de droites y a-t-il dans Fy ?

Solution. Une sous-droite vectorielle de Fy est (isomorphe &) F, (car c’est un espace vectoriel de
dimension 1), et elle contient donc g éléments. Puisqu’une droite affine est définie par translation,
et une translation est bijective, aussi chaque droite affine contient exactement ¢ éléments. Une
droite (affine) est déterminée par deux points distincts ; et cette méme droite est alors déterminée
par chaque paire de points distincts contenus dans cette droite. Donc, pour compter les droites

dans Fy, on compte d’abord le nombre de paires de points distincts dans cet espace, soit ¢" -
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(¢" — 1) ; puis le nombre de paires de points distincts d’une droite,, soit ¢- (¢ — 1) ; pour conclure

que le nombre de droites affines distinctes dans Fy est % =¢"" Y+ g +1). O

Exercice 1.5.19 (Equations paramétriques et équations cartésiennes). Parmi les en-
sembles ci-dessous, déterminer les (sous-)espaces affines : le cas échéant, donner une présentation
paramétrique ainsi que des équations cartésiennes (par rapport & la base canonique de 1’espace
enveloppant), puis indiquer sa direction et un point de passage (et en déduire sa dimension).

1. {(z,y) ER? |z +y =2}

2. {(x,y) € R? |22 — Ty = 0 = 52 + 3y}

3. {(2,y) €R? |22 +42 = 1)

4. {(z,y,2) €R® | z — 2+ 2y = 0 ou 3z + 3y = 3}
5. {(z,y,2,t) ERY |z =2y =32+t —1}

6. {(x,9,2) €ER® |92 —y +T72=—1}

7. {(z,y,2) ER3 | —z+5y+z=1et 22 —2z=4et 2+ 5y =5}
8. D =R(1,2,3) + (4,5,6)

9. P=R(1,1,0) + R(—1,0,1) + (2, 2,4)

10. {P € Reg[X] | P(0) = P(1)}

11. {P € R<3[X] | P'(1) =0}

12. {M € R?*2 | tr(M) =1}

13. {M € R?*2 | det(M) = 0}

14. {M € R?*? | M est diagonale}

Exercice 1.5.20 (Equations cartésiennes et intersections). Dans R3, donner une présen-
tation paramétrique ainsi que des équations cartésiennes des sous-espaces affines suivants (par
rapport a la base canonique) :
1. la droite D passant par les points (0,1,1) et (—1,2,2),
2. le plan P, passant par le point (0, —3,1) et paralléle au plan d’équation 3z —y + 5z =7,
3. le plan P, contenant le point (—2,7,0) et la droite R(6, —5,1) + (0,1, 2).
Déterminer ensuite les intersections DN P, DN Py, PPN Py et DN PN Ps.

Exercice 1.5.21 (Intersections de sous-espaces affines). On considére les sous-espaces

affines suivants de R3 :

xr
1 6 —2 2
A=R(2,3,-2)+(1,0,0) B: =
pocvaon o0 9[-0
z

C=R(1,1,1) + R(2,0,—-2) + (5,2,1) D :2zx+3y— 2z =6.

Déterminer les intersections AN B, ANC, AN D, etc. Y a-t-il dans cette liste des sous-espaces

affines supplémentaires?

Exercice 1.5.22 (Théoréme du toit). Dans un espace affine de dimension 3, montrer que si

deux plans affines non-paralleles P; et P, contiennent respectivement deux droites paralleles Dy
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et Do, alors l'intersection D3 = P; N P, est un droite affine parallele & Dy et & Ds.

Ds

Dy Dy

Exercice 1.5.23 (Déterminer un plan). Dans un espace affine quelconque, montrer que deux
droites affines distinctes paralleles ou sécantes sont contenues dans un et un seul plan affine. Et

si ces droites ne sont ni paralleles, ni sécantes ?

Exercice 1.5.24 (Théoréme du toit—application). Dans R?, on considére un tétracdre
abed ainsi que des points sur ces cotés, notés x, y et z, tels que yz // be, {m} = zy N ab et

{n} =zznac:

Montrer que be j/ mn.

Exercice 1.5.25 (Théoréme du toit—généralisation). Dans un espace affine de dimension
3, soient P;, P» et P5 trois plans deux a deux non-paralléles. Montrer que les droites d’intersec-

tions D1 = P, NP3, Dy = P3N Py et D3 = Py N P, sont paralleles ou concourantes.

Exercice 1.5.26 (Barycentres et translations). Soit un espace vectoriel V. Montrer qu'une
combinaison linéaire b = agag + ... + agag dans V' est un barycentre (donc ag + ... + a = 1)
si et seulement si, pour tout t € T(V), on a tb = agtag + ... + agtar. Autrement dit, une
combinaison barycentrique (= affine) est exactement une combinaison linéaire préservée par

toutes les translations.

Exercice 1.5.27 (Fonction de Leibniz). Soit un espace vectoriel V. Etant donné des points

{ag, ...,ap} CV et des scalaires {ay, ..., } € K, on définit la fonction

L:V—=V: xHZai(ai—x).

7

Montrer que cette fonction est constante si >, a; = 0, et bijective si ), a; # 0. Dans ce deuxieme

cas, identifier I'image réciproque de 0.

22



1. Espaces affines

Exercice 1.5.28 (Coordonnées barycentriques et coordonnées cartésiennes). Soit un
repere affine {ao, ..., ax} d’un sous-espace affine A C V'; ainsi {a1 — ag, ..., ar — ap} est une base

du sous-espace vectoriel Ag C V. Tout point & € A s’écrit donc comme un barycentre
r=apa+..+agar avec ag+ ...+ o =1,
et le vecteur & — ag € Ap s’écrit comme une combinaison linéaire
xr —ag = aj(a —ag) + ... + a)(ax — ag).
Montrer comment ces coordonées barycentriques et cartésiennes se déterminent mutuellement.

Exercice 1.5.29 (Barycentres—sur une droite dans le plan réel). Soit une droite affine
ab passant par deux points distincts a et b du plan R?, que l'on considére avec sa géométrie
euclidienne vue en L2. Tout point de la droite s’écrit donc par un barycentre x = aa + (b, et
on veut calculer ses poids « et 8. Pour cela, considérons d’abord un point z situé entre a et b,
puis les triangles formés a l’aide de l'origine o (que l'on suppose en dehors de la droite ab) et

des segments paralleles :
a

e
o

Utiliser le Théoréeme de Thales pour montrer qu’alors

distance bx distance ax

= et = -
distance ab distance ab
Modifier 'argument pour décrire tous les points de ab, en introduisant des distances signées. (Ce

résultat est en fait valable dans tout espace euclidien.)

Exercice 1.5.30 (Barycentres—origine physique). En physique classique, d’apres les tra-
vaux d’Archimedes (Apywhdnc) de Syracuse (qui vivait donc a Syracuse, sur la cote dans le
sud-est de la Sicile, de —287 & —212), la loi du levier dit que

Fily = Fylo,

ol F; est une force et [; est une longueur de bras de levier. On peut par exemple penser a
deux poids (poids = force de pesanteur exercée sur une masse) en équilibre sur une balance

“asymétrique” :
l

P
Y A T
Fy
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Montrer que la position du pivot du levier est le barycentre des extrémités du levier, dont les
coefficients sont les poids. (Ceci est effectivement 'origine historique du calcul barycentrique ;

Bapuc se traduit par “poids”.)

Exercice 1.5.31 (Associativité du calcul barycentrique). Soit un triangle abc dans un
plan affine. Pour situer le point p de coordonnées homogenes (« : 5 : ), montrer comment on

peut le faire “en deux étapes”, comme suggéré par le dessin suivant,

ol m est le barycentre de (a, ), (b, B) et p est le barycentre de (m,a + f3), (¢,7). (Que faire si
a+p=07)

Exercice 1.5.32 (Barycentres—dans le plan réel). Soit un triangle non-aplati abc dans le
plan R?, que I'on considére avec sa géométrie euclidienne vue en L2. Tout point x € R? s’écrit
alors de maniere unique comme un barycentre x = aa + b + ¢, et on veut déterminer les
coeflicients «, 8 et «. Considérer d’abord un point x a 'intérieur du triangle abc, et montrer que

tout point de la droite parallele a ab et passant par x a le méme coefficient  :

(Indication : exprimer x comme barycentre de ¢ et z’ puis utiliser le Théoréme de Thales.) En

abaissant une droite perpendiculaire de ¢ sur ab, en déduire que

aire abd  aire abx
aire abc  aire abc’

puis conclure “en répétant 'argument” par

aire zbc aire axc aire abx

— = — Y= .
aire abc aire abc aire abc

Généraliser pour un point quelconque du plan, avec des coordonnées barycentriques éventuel-
lement négatives, en introduisant la notion d’aire signée d’un triangle. (Ce résultat est en fait

valable dans tout espace euclidien.)
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Exercice 1.5.33 (Barycentres—dans le plan réel (2)). Dans R? (que I’on considére avec sa
géométrie euclidienne vue en L2), montrer que les coordonnées homogenes (« : 3 : v) d’un point

z a lintérieur d’un triangle équilatéral abc sont données par les longueurs indiquées ci-dessous :

C

Exercice 1.5.34 (Barycentres—dans le plan réel (3)). Dans R? (que I’on considére avec
sa géométrie euclidienne vue en L2), montrer que l'aire signée du parallélogramme ci-dessous
est donnée par det (“1 b1 ) :

az ba

Y/\
7 :

a2 ........ ................. /

by ai 3(

En déduire une formule pour Daire signée d’un triangle quelconque abe dans R?, de sommets
a = (a1,az2), b = (b1,b2) et ¢ = (c1,c2). Conclure que, par rapport a ce triangle abe, tout

x = (21,72) € R? a pour coordonnées homogenes

by —x1 1 — a1 c1—x1 a1 — 1 ar —x1 by — a1
<det : det : det ),
by — w2 co— @2 Co — Ty a2 — T3 az — x3 by — x2
ou, de maniere équivalente,

1 b ar 1 c1 ar by w1
(det Tog by co|:det|ag mo co| :det|as by o )
1 1 1 1 1 1 1 1 1

Formuler un critére (par un calcul de déterminants) pour vérifier si un point 2 € R? est inclus ou
non dans un triangle abc de sommets donnés. (Ceci a d’importantes applications en robotique
(par exemple, pour positionner un robot dans ’espace), en graphisme informatique (images de

synthese, rendu de surfaces), etc.)

Exercice 1.5.35 (Famille affinement libre). Pour les ensembles de points suivants, dire s’ils
sont affinement libres et déterminer le sous-espace affine engendré :
1. {(3,1),(1,3)} C R?
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2. {(3,1),(1,3),(0,8)} C R?

3. {(0,0),(3,1),(1,3)} C R?

4. {(5,5,3),(1,4,7),(2,-5,2)} CR?

5. {(1,2,2),(6,7,1),(~11,-7,4)} CR3

6. {(2,3,5),(4,1,6),(2,8,4),(4,6,5)} CR3

Exercice 1.5.36 (Repére affine). Donner un repere affine pour les sous-espace affines sui-
vants :
L {(z,y) ER? |z +y =2}
{(z,y,2) ER3 |9z —y + 72 = —1}
{(z,y,2) ER3| —x+ 5y +2z=1et 2z — z = 4}
D =R(1,2,3) + (4,5,6)
P=R(1,1,0) + R(-1,0,1) + (2,2,4)
{M € R>*? | tr(M) = 1}

S Otk N

Exercice 1.5.37 (Coordonnées barycentriques dans R?). Etant donné trois points dis-

tincts et non-alignés a, b et ¢ dans R?, placer les (ensembles de) points suivants :

1.d=1%a+ 3b

2. e=2a—0

3. f=0a+0b

4. {r=aa+pb|la+pB=1a>1}

5. g:%a—}—%b—i—%c

6. h=—3a+5b—c

7.1=2a+b—-2c

. {zr=aa+pBb+vc|la+p+y=1a+p>1}

Exercice 1.5.38 (Repére affine de R?). Donner les coordonnées barycentriques d’un point
(x,y) € R? dans les repéres affines suivants :

L. {(0,0),(1,0),(0,1)}

2. {(~1,1),(1,0),(0,1)}

3. {(1,4),(=2,2), (=5,0)}

Exercice 1.5.39 (Repére affine de R?). Pour chacun des points a = (0,0,0), b = (3,9,2)
et ¢ = (2, i,Q) de R3, dire s’il est dans le sous-espace affine ((2,3,1),(3,4,6), (0,4, —5)), et
donner alors ses coordonnées barycentriques.

Exercice 1.5.40 (Centre du cercle inscrit dans un triangle réel). Pour un triangle non-
aplati abc dans R? (que l'on considére avec sa géométrie euclidienne vue en L2), exprimer le

centre de son cercle inscrit comme un barycentre des sommets.
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Exercice 1.5.41 (Entre deux droites). On considére deux droites sécantes dans un plan
affine sur un corps K tel que car(K) # 2. Montrer que tout point en dehors de ces deux droites

est le milieu de deux points se trouvant sur 'une des deux droites.

Si on travaille dans le plan R? (avec sa géométrie euclidienne vue en L2), comment peut-on

construire avec reégle et compas ces deux points 7

Exercice 1.5.42 (Isobarycentre). Soit un triangle non-aplati abc dans un plan affine sur un
corps K tel que car(K) ¢ {2,3}. Montrer que l'isobarycentre de abc est également lisobary-
centre du triangle dont les sommets sont les milieux des cotés de abc. Généraliser cet énoncé en

remplacant “milieu des cotés” par une expression barycentrique adéquate.

A S A

Exercice 1.5.43 (Centroide d’un quadrilatére). Soit un quadrilatéere abed dans un plan
affine sur un corps K de car(K) # 2.

C

Montrer qu’un point g est lisobarycentre des quatre sommets si et seulement si g est le point
d’intersection des segments joignants les milieux de cotés opposés (les bimédianes du quadrila-

tére), si et seulement si g est le milieu du segment reliant les milieux des diagonales.

Exercice 1.5.44 (Centroide d’un tétraédre). Soit un tétracdre abed dans un espace affine de
dimension 3 sur un corps K de car(K) ¢ {2,3}. Montrer que l'isobarycentre des quatre sommets

est le point d’intersection des 4 droites reliant un sommet au centroide de la face opposée, ainsi
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que des trois bimédianes (= droites joignants deux milieux de cdtés opposés).

Exercice 1.5.45 (Menelaos—application). Pour un triangle abc dans un plan affine, on
suppose que deux points x € bc et y € ac sont donnés par leurs coordonnées homogenes. Utiliser

le Théoréeme de Menelaos pour calculer les coordonnées homogenes de 1'unique z € ab N zy.

Exercice 1.5.46 (Parallélogramme). Soient quatre points a, b, ¢ et d distincts et non-

colinéaires dans un espace affine. Montrer que les conditions suivantes sont équivalentes :

1. ad // be et ab J/ cd,

2. a est de coordonnées homogenes (1 : —1: 1) dans le repere {b, ¢, d},
3.a—d=b-c

4. a—b=d—c,

5. si car(K) # 2 : ac et bd se coupent en leur milieu.

d

Bien siir, on appelle un tel quadrilatere un parallélogramme. Observer que les sommets d’un

parallélogramme sont coplanaires.

Exercice 1.5.47 (Parallélogramme et corps de caractéristique 2). Montrer qu'un corps
K est de caractéristique 2 si et seulement si tout parallélogramme dans n’importe quel espace

affine sur K a des diagonales paralléles.

Solution. Si car(K) # 2 on a déja montré que les diagonales de tout parallélogramme s’inter-

sectent en leur milieu. Si car(K) = 2 et abed est un parallélogramme, alors (avec les conditions
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équivalentes de I’exercice précédent)
a—c=(a—b)+b-—d)+(d—c)=d—c)+b—d)+(d—c)=(0b—-d)+2(d—c)=b—d
et donc les diagonales ont méme direction, c’est a dire, sont paralleles. O

Exercice 1.5.48 (Théoréme de Varignon). Soit un quadrilatére abed dans un plan affine sur
un corps K de car(K) # 2. Montrer que les milieux des cotés du quadrilatere sont les sommets

d’un parallélogramme ; autrement dit, les bimédianes de abcd s’intersectent en leur milieu.

d b

Exercice 1.5.49 (Famille de parallélogrammes). Soient abed et a'b/d’d’ deux parallélo-

grammes dans un plan affine sur un corps K et notons
ag=(1—t)a+td by=1—-t)b+t c=1—-t)c+td dy=(1—t)d+td

pour t € K. Montrer que chaque a;bicid; est un parallélogramme, et observer que les som-
mets de cette famille de parallélogrammes sont alignés. Voici une illustration dans R?, ot les

parallélogrammes noirs sont donnés et les autres sont calculés pour quelques valeurs de t € R :

<>

Ce principe est utilisé en graphisme informatique (dessin animé), pour créer des images inter-

médiaires entre deux positions tout en gardant certaines propriétés (comme le parallélisme).
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Exercice 1.5.50 (Quadrilatére complet). Un quadrilatére complet dans un plan affine est
la donnée de 4 droites ayant exactement six points d’intersection ; autrement dit, c’est un qua-

drilatere abed dont les cotés opposés s’intersectent :

(&

Montrer que les milieux des 3 diagonales sont colinéaires (on suppose que car(K) # 2).

Exercice 1.5.51 (Courbes de Bézier). Dans le plan affine réel, on considére trois points a,

b et ¢ non-alignés, et pour ¢ € [0, 1] on définit les barycentres
mg=(1—t)-a+t-b, ng=(1—1t)-b+t-c, pp=1—1t)-mg+t-n.

Montrer que la fonction I': [0, 1] — R2: ¢ + p; est quadratique en ¢, et que I'(0) = a et I'(1) = c.
L’image de I' est un arc de parabole reliant a et ¢, et ayant ab comme tangente en a, et cb comme

tangente en c : c’est la courbe de Bézier de a a c avec point de controle b.

On peut généraliser ce principe a des courbes de Bézier ayant n points de controle (et les courbes
seront polynomiales de degré n + 1). Ces courbes sont fort utilisées pour créer des images sur
ordinateur ; notamment les lettres que vous lisez ici-méme (ainsi que la plupart des lettres partout
ailleurs) ont été créées avec des courbes de Bézier de degré 2 et 3. (Truetype fonts sont faits avec

des courbes de degré 2, alors que Postscript fonts utilisent des courbes de degré 3.)
Exercice 1.5.52 (Intersection d’hyperplans affines). Soit un espace vectoriel V' de dimen-
sion n. Montrer que l'intersection de deux hyperplans affines H et H' de V est

— soit un hyperplan (si H = H'),

— soit le vide (si H # H' et H /| H'),

— soit un sous-espace affine de dimension n — 2 (si H # H' et H } H').
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Solution. Si H = H' alors bien stir H N H' = H = H’ est un hyperplan. Supposons maintenant
que H# H' et H//H'.Sibe HNH alors H= Hy+ b= H)+ b= H' est une contradiction ;
donc H N H' = (). Supposons finalement que H # H' et H  H'. On a alors Hy # H), et il
existe donc un 0 # x € Hy tel que = ¢ H|), c’est a dire, il existe une droite vectorielle Dy = Kz
contenue dans Hy et supplémentaire & Hy. Ainsi il suit que V' = Dy ® H), C Hy+ H\, C V, donc
Hy+ H{, = V. Par la formule “vectorielle”

dim(Hy + H{) + dim(Ho N Hy) = dim(Hp) + dim(H)

on sait alors que Hy N HY, est un sous-espace vectoriel de dimension n — 2. De plus, pour a € H
quelconque, D = Dy+a est une droite affine, contenue dans H, et supplémentaire & H'. Il y a donc
un unique point d’intersection de D avec H, soit b. Et enfin, (HyNH{)+b = (Ho+b)N(H)+b) =

H N H' est un sous-espace affine de dimension n — 2. Il

Exercice 1.5.53 (Sous-espaces supplémentaires). Soit un espace vectoriel V' de dimension
n. Montrer que deux sous-espaces affines A, B C V sont supplémentaires (c’est a dire, de di-
rections supplémentaires au sens de sous-espaces vectoriels) si et seulement si leurs dimensions

sont de somme n et ils s’intersectent en un seul point.

/

(Ce résultat sera utile pour définir les projections affines plus tard.)

B

Solution. Supposons que Ay @ By = V' ; déja, la somme des dimensions de A et B est donc la
dimension de V. Pour a € A et b € B (un sous-espace affine n’est jamais vide!), on peut trouver
r€Ayetye Bytelquea—b=x+y, et donc —x+a=y+be (Ag+a)N(By+b) =ANDB,
montrant que cette intersection n’est jamais vide. Notons maintenant ¢ € A N B, alors par
bijectivité de la translation t_. ona (ANB) —c=(A—c¢)N (B —c¢c) = Ao N By = {0}, ce qui
montre que {c} = AN B. L’intersection est donc bel et bien un seul point.

Réciproquement, si AN B = {c} alors AN By=(A—c)N(B—c¢c)=(ANB)—c={0}; et
parce que la somme des dimensions de A et B (c’est a dire, de Ag et Bp) est la dimension de V/,

il suit par la formule “vectorielle”
dim(Ag + Bo) + dlm(Ao N Bo) = dlm(Ao) + dlm(Bo)

que Ag @ By = V. Ainsi A et B sont des sous-espaces affines supplémentaires. O
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2.1. Le groupe linéaire

Une application f: V — W entre deux espaces vectoriels (sur le méme corps K) est linéaire si elle
préserve toute combinaison linéaire. Bien siir, des applications linéaires f: V — Wet g: W — Z
se composent en une application linéaire gf: V' — Z, cette composition est associative, et a les
applications identité pour neutres; autrement dit, il y a une catégorie Vecg d’espaces vectoriels
et applications linéaires. Une application linéaire f: V — W est complétement déterminée par
(sa linéarité et) son action sur une base de V. Si on choisit des bases (finies) de V' et W, on peut
représenter f: V' — W par une unique matrice. Pour tout sous-espace vectoriel £ C V| 'image
par f est un sous-espace vectoriel f(F) de W ; et pour tout sous-espace vectoriel F' C W, I'image
réciproque par f est un sous-espace vectoriel f~1(F) C V. L’'image im(f) = f(V) et le noyau
ker(f) = f~1{0} de f: V — W sont liés par le Théoréme du Rang : dim(im(f))+ dim(ker(f)) =
dim(V).

Lorsqu’on veut étudier les “symétries” d’un espace vectoriel, il est naturel de considérer :

Définition 2.1.1. Soit un espace vectoriel V. Un automorphisme linéaire f: V — V est une

application linéaire bijective.

Si une application linéaire f: V — W est bijective, alors son inverse ensembliste f~1: W — V

est aussi linéaire. Ainsi on obtient :

Proposition 2.1.2. L’ensemble GL(V') des automorphismes linéaires d’un espace vectoriel V
est un sous-groupe de Bij(V); on Uappelle le groupe général linéaire, ou tout simplement le

groupe linéaire, de V.

Par le Théoréme du Rang on a immédiatement qu'une application linéaire f: V' — V est bijective
si et seulement si ker(f) = {0}, si et seulement si im(f) = V. Rappelons aussi que les éléments

de GL(V) peuvent étre vus comme les “changements de base” dans V :

Proposition 2.1.3. Soit un espace vectoriel V. Une application linéaire f: V — V est un

automorphisme linéaire si et seulement si f envoie une (et alors toute) base sur une base.
Pour montrer les capacités “géométriques” du groupe GL(V'), prenons acte de :

Proposition 2.1.4. Tout automorphisme linéaire f: V — V envoie un sous-espace vectoriel
E CV sur un sous-espace vectoriel de méme dimension. Pour deux sous-espaces vectoriels de
méme dimension, E, E' C V, il existe au moins un automorphisme linéaire f: V — V tel que
f(E)=FE".
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2.1. Le groupe linéaire

Ajoutons que, par sa bijectivité, tout f € GL(V) préserve (et réfléchit, par I'application inverse
1) toute incidence géométrique de sous-espaces vectoriels : si une configuration de sous-espaces
de V satisfait a des conditions exprimées a l’aide de leurs inclusions, réunions, intersections
et/ou sommes, alors tout f € GL(V) l'envoie sur une configuration de sous-espaces de mémes
dimensions, satisfaisant aux mémes conditions. Pour terminer ce premier paragraphe de rappels,

faisons le lien avec le calcul matriciel :

Lemme 2.1.5. Pour tout corps K et tout n € N, I’ensemble
GL(n,K)={M € K™" | M inversible}
est un groupe pour le produit matriciellﬂ.

Proposition 2.1.6. Soit un espace vectoriel V de dimension n sur un corps K. Pour tout choix
de base de V, il y a un isomorphisme de groupes GL(V) =2 GL(n, K) identifiant f € GL(V) a

sa matrice par rapport a la base choisie.

On va maintenant décrire un premier sous-groupe important de GL(V'). Pour cela, rappelons
que f:V — V est inversible si et seulement si det(f) # 0. (Pour définir det(f) on utilise une
base de V'; mais on montre ensuite que le choix de base est sans importance, et que donc
det(f) est bien un invariant numérique canonique de f: V' — V.) On a donc une application
det: GL(V) - K* = K \ {0}. Mais le domaine de cette application est le groupe linéaire de V,

et le codomaine est le groupe multiplicatif (K, -, 1) du corps K. Il vient en fait que :

Théoréme 2.1.7. Soit un espace vectoriel V' de dimension n > 1. L’application det: GL(V) —
K*: f+ det(A) est un homomorphisme surjectif de groupes. Son noyau, noté SL(V'), est appelé

le groupe linéaire spécial de V. On a ainsi une suite exacte courte

SL(V) s GL(V) -9¢b;

X

d’homomorphismes de groupes, et il suit notamment que GL(V)/SL(V) = K*.

Démonstration. Par multiplicativité du déterminant, ’application det est un homomorphisme
de groupes. Pour voir la surjectivité de det, on peut choisir une base {ej,...,e,} de V puis
observer que, pour tout & € K*, "'automorphisme linéaire f € GL(V') déterminé par fe; = aey
et fe; = e; pour i # 1, est de déterminant « : car cela revient a définir f: V — V par rapport

a la base choisie par la matrice

(remplie avec des 0). O

1. Si n = 0 alors “la matrice sans éléments” est I'unique élément de GL(n, K), qui est donc trivialement un
groupe. Du point de vue du calcul matriciel, cela est totalement sans intérét ; mais du point de vue de ’algebre,

lespace nul {0}, et le groupe trivial GL({0}) = {id}, ont certainement leurs raisons d’étre!
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2. Applications affines

Pour tout choix de base {ey, ...,e,} de V, on a un isomorphisme GL(V) = GL(n, K), sous lequel

SL(V) est donc identifié avec les matrices de déterminant égal a 1 :
SL(n, K)={M € K™ | det(M) = 1}.
On peut résumer ainsi : pour tout choix de base de V' on a un diagrame commutatif

X

SL(V) s GL(V) —dety,

J J

SL(n,K) s GL(n, K) -9¢b,

X

d’homomorphismes de groupes, dont les lignes horizontales sont des suites exactes courtes, et
les fleches verticales sont les isomorphismes déterminés par la base choisie de V. Ainsi on a
GL(V)/SL(V) = K*, et de méme au niveau matriciel. (Ces suites exactes courtes sont scindées,
mais pas de fagon canonique; c¢’est pourquoi on ne le détaille pas ici.)

Nous poursuivons ’étude du groupe GL(V') par le calcul de son centreﬂ : cela donnera un

sous-groupe normal important. Avec 'avantage du recul, on définit :

Définition 2.1.8. Soit un espace vectoriel V et A € K*. L’application N\id: V — V: x — Ax

est un automorphisme linéaire, appelée homothétie linéaire de rapport .
Il est évident que :

Proposition 2.1.9. Soit un espace vectoriel V de dimension n > 1. L’ensemble H(V') des
homothéties linéaires de V' est un sous-groupe de GL(V'), isomorphe a (K*,-,1). Il suit que ce

groupe est commutatif.

Si on considére I'isomorphisme de groupes GL(V') =2 GL(n, L) déterminé par une base {e1, ..., e, }

de V, alors le sous-groupe H(V) C GL(V) est identifié aux matrices scalaires non-nulles :

A
Hn,K)=1{| - | Ae K.

Autrement dit, on a un diagramme commutatif

H(V) — GL(V)

! !

H(n,K) — G(n,K)

de groupes et d’homomorphismes, dont les fleches verticales sont des isomorphismes déterminées
par une base choisie de V. (En fait, I'isomorphisme H (V') = H(n, K) ne dépend pas de la base

choisie : ¢’est un isomorphisme canonique.)

2. Le centre d’un groupe G est le sous-groupe des éléments de G qui commutent avec tous les éléments de G ;

on le note Z(G). C’est toujours un sous-groupe normal.
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2.1. Le groupe linéaire

Théoréme 2.1.10. Soit V' un espace vectoriel, alors H(V') est le centre de GL(V).
Pour bien formuler la démonstration de ce théoreme, il est utile d’introduire d’abord :

Lemme 2.1.11. Soit un espace vectoriel V.. Pour tout 0 # x € V il existe un s € GL(V) fizant

exactement les points de Kx (donc s(y) =y si et seulement siy € Kx).

Démonstration. Pour tout 0 # x € V on peut trouver une base {e1,...,e,} de V dont le premier
élément est x; et ensuite on peut définir un automorphisme linéaire s: V' — V par s(e;) = e;

et s(e;) = e; +e;—1 (pour i > 2). C’est a dire, par rapport a cette base, la matrice de s est

(on remplit avec 0 ot il n’y a pas de 1). Alors pour tout y = >_; a;e; on a s(y) = y si et seulement
si (a1 +ag)er + (ag +ag)es + ... + (an—1 + an)en, = >, aje;, si et seulement si a; = 0 pour tout
i # 1, si et seulement si y = aje; = aqx. (Il existe bien d’autres automorphismes linéaires a cet

effet, mais ce choix particulier nous sera utile plus tard, du fait que det(s) = 1.) O

Démonstration du théoréme. Pour V = {0} tout est évident; supposons donc V' # {0}. L’in-
clusion H(V) C Z(GL(V)) est évident. Réciproquement, soit un f € GL(V) tel que fg = gf
pour tout g € GL(V). Soit  # 0 dans V, alors il existe un automorphisme s € GL(V') dont
les seuls points fixes sont les multiples de x (voir le lemme ci-dessus). Ainsi, de fs = sf
on a fr = f(sx) = s(fz), donc fxr est un point fixe de s. Il suit que 0 # fx € Kuz,
donc il existe A € K* tel que fx = Axz. A priori ce A\ dépend de x, mais si 2’ = ax alors
fr' = flax) = adx = \2’; et si x,2’ € V sont linéairement indépendants, et on suppose que
for =Xz, fo' = Na' et f(x+2') = N (z+2), alors f(z+2') = a4+ N2 = N (x+2a") = NV e+ N2/
implique que A = X (= \’). Cest a dire, il existe un seul A € K* tel que fz = Az pour tout
x € Viainsi f = \id € H(V). O

Puisqu’il en est le centre, le sous-groupe H(V) de GL(V) est normallﬂ Notons aussi que, en
dimension 0 et 1, H(V) et GL(V) coincident, et ce dernier est donc commutatif. Ce n’est pas
le cas pour dim(V') > 2! Remarquons finalement qu’au niveau matriciel, par les isomorphismes
H(V)Z H(n,K) et GL(V) =2 GL(n,K), H(n, K) est le centre de GL(n, K).

On dit qu'un groupe (G, -, 1) est linéaire s’il est isomorphe & un sous-groupe de GL(V') (et
la theorie des représentations (linéaires) des groupes abstraits est une branche importante des

mathématiques). Puisque GL(V) = GL(n, K), cela revient a dire que G est, & isomorphisme

3. Le quotient GL(V)/H (V) est appelé le groupe projectif linéaire de ’espace vectoriel V', et noté PGL(V).
En effet, il est le groupe des automorphismes projectifs de 1’espace projectif déterminé par ’espace vectoriel V'
(dont les points projectifs sont les droites vectorielles, les droites projectives sont les plans vectoriels, etc.). Mais
c’est une autre histoire...
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prés, un groupe de matrices de déterminant non-nul (pour le produit matriciel) ; on dit parfois
aussi que G est un groupe matriciel. Bien siir, GL(n, K) est lui-méme un groupe linéaire, ainsi
que le sous-groupe des homothéties (matrices scalaires non-nulles) et le sous-groupe spécial
(matrices de déterminant 1). On verra d’autres exemples de groupes linéaires dans les sections

qui suivent !

2.2. Le groupe affine

Nous souhaitons désormais étudier les bijections d’un espace vectoriel qui préservent les “figures
affines” (et leurs “propriétés affines”) dans cet espace. Pour cela, nous étudions l'interaction
entre translations et applications linéaires (et, en particulier, automorphismes linéaires).

La situation générale d’abord :

Proposition 2.2.1. Soient des espaces vectoriels V et W.
1. Soit une application linéaire f: V — W, alors pour tout t € T(V) il existe t' € T(W) tel
que ft =t'f.
2. Sitf =t'f" pour des applications linéaires f, f': V — W et des translations t,t': W — W,
alorst =1t" et f = f'.

Démonstration. (1) Soit t = t,: V — V, alors pour toute application linéaire f: V. — W et
tout € V on voit facilement que f(t,z) = f(z +a) = fr + fa =t (fx), c’est & dire, on pose
t' =t € T(W). (2) En effet, tf =¢'f implique t0 = t(f0) = ¢/(f'0) =t'0 d'ou t =¢'; et de la
onatf =tf" cequiimplique f = f’ par bijectivité de t. O

Par conséquent, toute composition de translations t; et d’applications linéaires f;, p.e.

f1 fQWf3Xt4X

/‘

t1 to t3

U U |4 |4 |4

taf3fatatafits

s’écrit de maniere unique comme la composée d’une application linéaire suivie d’une translation :

f t

U— X — X

(et on peut explicitement calculer f et ¢ si l’on veut). Cela justifie la définition suivante :

Définition 2.2.2. Une application g: V — W entre espaces vectoriels est affine si g =tf avec
f:V — W une (unique) application linéaire et t: W — W une (unique) translation.

Par ce qui précede, la composée de deux applications affines est une application affine; et bien
stir application identité, id: V' — V: x — z, est affine. Comme la composition d’applications est
bien associative, avec neutre donné par id, on obtient une catégorie Affx des espaces vectoriels
(sur le corps K) avec les applications affines.

Notons tout de suite une sorte de “5e Postulat d’Euclide” pour les applications affines :
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Proposition 2.2.3. Soit des espaces vectoriels V' et W. Une application affine g: V. — W est

complétement déterminé par sa partie linéaire et l’image d’un point.

Démonstration. On sait que g = tf pour une unique application linéaire f: V — W (supposée
connue) et une unique translation ¢: W — W (qu’on cherche a déterminer). Ecrivant ¢t = ¢,
pour b € W, on a donc gz = fx + b. Si on connait I'image gag d’un point (quelconque) ag € V,

alors gag = fag + b implique que b = gag — fag, et ainsi ¢ est déterminé. O

Le réle du calcul barycentrique pour la géométrie affine est encore souligné par :

Proposition 2.2.4. Une application g: V. — W entre espaces vectoriels est affine si et seule-

ment si g préserve les barycentres, i.e. pour tout ag, ..,a € V et ag, ..., € K tel que > ;o =1

on a g(X; va;) =Y, aiga;.

Démonstration. On montre facilement que toute application linéaire f: V' — W et toute trans-
lation t: W — W préserve les barycentres; cela implique que toute composée g = tf fait ainsi.

Réciproquement, soit une application g: V' — W préservant les barycentres. Si g0 = 0 alors
g est linéaire, car toute combinaison linéaire des vecteurs aq,...,ar peut étre vu comme un
barycentre des points 0,arq,...,ax ; et toute application linéaire est aussi affine. Si g0 = a # 0
alors t_,90 =0, et f =t_,g est une application linéaire selon 'argument précédent. Mais alors

g = tof est une application affine. O

Corollaire 2.2.5. Toute application affine g: V. — W entre espaces vectoriels est entiérement

déterminée par l'image d’un repére affine {ag, ...,a,} de V.

Corollaire 2.2.6. Soit une application affine g: V. — W entre espaces vectoriels. Pour tout
sous-espace affine A C V, l'image par g est un sous-espace affine g(A) C W. Pour tout sous-

espace affine B C W, l’image inverse par g est soit vide, soit un sous-espace affine g~1(B) C V.

Corollaire 2.2.7. Soit un espace vectoriel V. Un sous-ensemble A C V est un sous-espace

affine si et seulement si A est l’image d’une application affine injective.

Démonstration. Etant donné un sous-espace affine A C V, et fixant a € A, la composée de
I'inclusion linéaire i: Ay — V: x — x avec la translation (bijective) t,: V — V:z — z+a
est une application affine injective g: Ag — V: 1z — x + a dont 'image est exactement A.

Réciproquement, le corollaire précédent s’applique. Il

Une application affine ¢ = tf: V' — W est injective (surjective, bijective) si et seulement
sa partie linéaire f l’est, parce que la translation ¢ est toujours bijective. Ainsi, en particulier,
I'inverse (ensembliste) d’une application affine bijective est g~ = (tf)~! = f~1t=! = ¢/f~!
pour une unique t' € T'(V') (que 'on peut facilement calculer avec la Proposition , et avec

f~1 € GL(V). Ceci montre que g~! est aussi une application affine. En toute logique on pose :

Définition 2.2.8. Soit un espace vectoriel V. Un automorphisme affine g: V. — V est une

application affine bijective.

38



2. Applications affines

Ce qui précede montre immédiatement :

Proposition 2.2.9. Soit un espace vectoriel V.. L’ensemble GA(V') des automorphismes affines

de V est un sous-groupe de Bij(V'), appelé le groupe affine de V.

Tout comme les f € GL(V) sont les “changements de base (vectorielle)”, les g € GA(V') sont

les “changements de repeére affine” :

Proposition 2.2.10. Soit un espace vectoriel V. Une application affine g: V. — V est un
automorphisme affine si et seulement si g envoie un (et alors tout) repére affine de V' sur un

repere affine de V.

Démonstration. Une application affine g = ¢ f est injective, surjective ou bijective si et seulement
si sa partie linéaire f 1’est. Ainsi, une application affine g: V' — V (V' de dimension finie) est un
automorphisme si et seulement si elle est injective, si et seulement si elle est surjective.

Supposons d’abord que l'application affine g est injective. Etant donné un repere affine
{ag, ...,ap} de V, si un élément ga;, € {gao, .., gan} serait un barycentre des autres éléments de
cet ensemble, alors il serait de méme pour a;, € {ay,...,a,}, contredisant ainsi que {ao, ..., an}
est affinement libre. Ainsi {gao,...,ga,} est affinement libre dans V', et donc un repére affine
(car comptant le “bon nombre” d’éléments).

Réciproquement, supposons que l'application affine g envoie un repére affine {ay, ..., a, } sur
un repeére affine {gay, ..., gan}. Tout y = >, ayga; € V (avec >, a; = 1) est alors I'image par g

de x = ), oya;. Ceci montre la surjectivité de g. O

Regardons maintenant de plus pres le groupe GA(V) et sa relation avec les groupes déja

rencontrés. Sans doute le résultat le plus important est :

Théoréme 2.2.11. Soit un espace vectoriel V. L’application GA(V') — GL(V'), envoyant une
application affine g = tf sur sa partie linéaire f, est un homomorphisme surjectif de groupes,

dont T(V') est le noyau ; il suit que GL(V) = GA(V)/T(V). De plus, la suite exacte courte

T(V) —— GA(V) —» GL(V)
est scindée par linclusion de GL(V') dans GA(V) ; il suit que GA(V) =T(V) x GL(V).
Démonstration. Notons, pour cette démonstration,

0:GA(V) - GL(V):g=tf— f

lapplication (bien définie, voir plus haut!) envoyant un automorphisme affine sur sa partie
linéaire. Pour tout g,¢9" € GA(V) il suit que 6(¢’'g) = 6(t'f'tf) =o('t"f'f) = f'f =(9')0(9);
ainsi ¢ est un homomorphisme de groupes. Sa surjectivité suit du fait que, pour tout f € GL(V),
on peut poser ¢ = idy f (donc on prend la translation “identité”, ¢ = idy = ty) pour voir
que d(idy f) = f. Clest a dire, la surjection 6: GA(V) — GL(V) est scindée par I'inclusion
GL(V) — GA(V): f +— f (et cette inclusion est aussi un homomorphisme). Finalement, il est
immédiat que kerd = {g =tf € GA(V) | f=idy} =T (V). O
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On sait que le groupe des translations T'(V') est isomorphe au groupe (V,+,0), I'isomorphisme
étant donné par t — t0, avec inverse a — t,. Ainsi on a un diagramme commutatif de groupes

et homomorphismes,

T(V) —— GA(V) “—% GL(V)

| H

Vi GA(V) = GL(V)

dont les fleches verticales sont des isomorphismes. Cela montre que la suite exacte courte scin-
dée a la premiere ligne peut étre remplacé par la suite exacte courte scindée a la deuxieme
ligne, et permet d’écrire aussi GA(V) =V x GL(V). Par ailleurs, identifiant ces suites exactes
courtes scindées par des actions de groupeslﬂ7 I’action correspondant a la premiere suite est la
conjugaison,

T(V)x GL(V) = T(V): (t, f) — ftf,

alors que l'action correspondant a la deuxieme suite est 1'action standard,
VxGL(V)—=V:(a,f)w fa,

chose tout a fait naturel puisque GL(V') C Bij(V). (Et ces deux actions sont isomorphes!)
Ayant décrit le groupe des automorphismes affines, il est important de comprendre comment

les “figures affines” dans un espace vectoriel sont transformées.

Proposition 2.2.12. Soit un espace vectoriel V et g € GA(V). Pour tout sous-espace affine
A CV, limage g(A) est un sous-espace affine de méme dimension que A. St B C V est un autre
sous-espace affine, alors on a A /| B si et seulement si g(A) J/ g(B). Et si A, A" CV sont deux
sous-espaces affines de méme dimension, alors il existe (au moins) un g € GA(V') envoyant A

sur A’.

Démonstration. Puisque g =tf avect € T(V) et f € GL(V), il suffit de démontrer les propriétés
énoncées pour toute translation et toute automorphisme linéaire.

Soit d’abord t. € T(V). Pour a € A on voit que t.(A) = t.(Ag+a) = Ag+ (a+c) = tarc(Ao)
est un sous-espace affine de méme dimension que A. Ensuite, supposant que b € B, on a aussi
te(B) = tpre(Bo), ce qui montre que A // B si et seulement si Ay = By, si et seulement si
te(A) /] te(B).

Soit maintenant f € GL(V). Toujours pour a € A, on a f(A) = f(t.(Ao)) = tra(f(Ao)) et
puisque f(Ap) est un sous-espace vectoriel de méme dimension que Ag, f(A) est un sous-espace
affine de méme dimension que A (bien que de direction différente). De méme, si maintenant
B = ty(By) alors f(B) = f(ts(Bo)) = tsp(f(Bo)), et donc A J/ B si et seulement si Ay = By, si
et seulement si f(Ap) = f(By), si et seulement si f(A) // f(B).

Finalement, il suffit d’observer que, pour A = Ag+a et A" = Ajj+a’ avec Aj et Afj de méme
dimension, on peut toujours trouver (au moins) un automorphisme linéaire f € GL(V) tel que

f(Ao) = Aj, puis lapplication affine g = t, ft_, envoie A sur A’. O

4. La suite exacte courte scindée N »—j— G iﬁj@ equivaut l'action 7(N) x s(Q) — 7(IN) “par conjugai-

son”.
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Ajoutons au résultat précédent que, par sa bijectivité, tout ¢ € GA(V) préserve aussi toute
relation d’incidence entre sous-espaces affines. Ainsi, tout automorphisme affine de V envoie
points sur points, droites sur droites, plans sur plans, etc., et préserve (et reflete) toute incidence
et tout parallélisme entre points, droites, plans, etc. Bref, le groupe affine détecte (ou décrit)
exactement le caracteére affine de figures dans V.

D’un autre point de vue, on peut aussi voir les éléments de GA(V') comme les changements de
repére affine. Ainsi le résultat ci-dessus implique que le choix de repére affine est sans importance
lorsqu’on s’en sert pour démontrer des résultats “affines” (par un calcul barycentrique, p.e.).

Par ailleurs, le résultat montre aussi la transitivité du groupe GA(V') sur tous les ensembles
de sous-espaces affines de méme dimension—et notamment sur les points de V'! Ainsi, il atteste
que, vu par le groupe GA(V), l'espace V est homogéne (ce qu’il n’était pas pour le groupe
GL(V) : car 0 est un point fixe de tous les éléments de GL(V)).

2.3. Le groupe des dilatations

Un sous-groupe important de GL(V') est son centre, le groupe des homothéties linéaires H (V).
Un automorphisme affine quelconque g € GA(V') est toujours la composée d’une translation
t € T(V) avec un automorphisme linéaire f € GL(V'). Se limitant aux automorphismes linéaires
qui se trouvent dans le centre H(V) = Z(GL(V)), on définit :

Définition 2.3.1. Une dilatationlﬂ est un automorphisme affine dont la partie linéaire est une

homothétie linéaire.

Explicitement on peut écrire une dilatation comme d: V. — V:z +— Ax + a, pour A € K*
et a € V. Autrement dit, g € GA(V) est une dilatation si et seulement si son image par
I’homomorphisme surjectif GA(V) — GL(V') est dans le sous-groupe normal H(V) C GL(V).

Ainsi il vient de suite :

Proposition 2.3.2. L’ensemble D(V') des dilatations d’un espace vectoriel V' est 'image réci-
proque par I’homomorphisme surjectif GA(V)—» GL(V') du sous-groupe normal H(V) C GL(V).

Ainsi D(V') est un sous-groupe normal de GA(V') rendant commutatif le diagramme

D(V) ——» H(V)

!

GA(V) —» GL(V)
de groupes et homomorphismes, dont les fleches verticales sont des inclusions.
On obtient immédiatement une “sous-suite” exacte courte scindée (par I'inclusion)

T(V) —— D(V) — H(V)

H | !

T(V) —— GA(V) T GL(V)

5. Attention, ce terme ne signifie pas toujours la méme chose dans les références!
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montrant que D(V) =T (V) x H(V). (On peut remarquer que H (V) et T(V') sont des groupes
commutatifs, mais que D(V') ne l'est pas nécessairement : un produit semi-direct de groupes
commutatifs n’est donc pas toujours commutatif!)

La particularité des dilatations est tout a fait géométrique :

Proposition 2.3.3. Un automorphisme affine g: V. — V d’un espace vectoriel est une dilatation

si et seulement si g envoie chaque droite affine dans V' sur une droite affine paralléle.

Démonstration. Soit une dilatation g = th, avec t € T(V) et h € H(V), et une droite affine
to(Kx) (pour z # 0). On a alors que g(to(Kz)) = thte(Kz) = t'h(Kx) (et on peut explicitement
calculer ¢ € T(V) si Pon souhaite). Mais toute homothétie h = Aid: V' — V (A # 0) envoie toute
droite vectorielle sur elle-méme, donc t'h(Kx) = t'(Kx), qui est par définition paralléle a t,(Kx).
Réciproquement, supposons qu'un automorphisme g = tf € GA(V) envoie toute droite affine
sur une droite affine parallele ; alors stirement la méme chose est vraie pour I'application linéaire
f = t~'g (puisque toute translation fait ainsi). Mais f envoie donc toute droite vectorielle
sur elle-méme, et nous avons déja vu (dans la démonstration de Z(GL(V)) = H(V)) qu'un
tel f € GL(V) est nécessairement une homothétie (linéaire). Ainsi g est la composée d’une

translation avec une homothétie linéaire. O

Proposition 2.3.4 (Classification des dilatations). Pour chaque dilatation d € D(V'), une

et une seule des trois possibilités suivantes est satisfaite :
— d ne fize aucun point : d est une translation par un vecteur v # 0,

— d fixe exactement un point : d est une homothétie affine de rapport A # 1 et de centre le

point fixe,

— d fize tous les points : d est lapplication identité.

Démonstration. Posons d = t,hy avec tax = x4+ a et hyr = Ax (A € K*). Si A =1 alors d = t,,
et soit a = 0 et alors d = id fixe tous les points, soit a # 0 et alors d = t, ne fixe aucun point.
SiA#1 (et donc 1 — )\ € K*) alors de = z si et seulement si Az + a = z, si et seulement si
x = (1 —A)7la; cest & dire, d a un unique point fixe, ¢ := (1 — A\)"'a. Dans ce cas on peut
réécrire

dx =tohyr = Az +a = ANz — ¢) + ¢ = t.hyt_cx,
et ceci montre comment d: V' — V est une homothétie affine de centre ¢ (= le point fixe) et de

rapport A. O

Corollaire 2.3.5. Toute dilatation d € D(V') est complétement déterminé par l'image de deux

points distincts de V. (Et rappelons que pour une translation un seul point suffit.)

Démonstration. Si dia = dsa et dib = d2b pour a # b alors d1d2_1a = a et dldglb = b donc
d1d2_1 = id par la classification des dilatations, d’ott d; = da. (Sit: V — V: 2z +— x + b envoie a

sur o/, alors @’ = ta = a + b donc nécessairement b = a’ — a.) O
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Corollaire 2.3.6. Soit une dilatation d € D(V'), notons o' = da et b’ = db pour a,b € V, et
supposons que ces quatre points sont distincts et non alignés trois a trois. Si d est une translation
alors aa’ [/ bV ; et si d est une homothétie affine alors aa’ et bb' sont concourantes au centre de

I’homothétie. (Et rappelons que ab /| a'b’ dans tous les cas.)

Démonstration. Par hypothese, d n’est pas I'identité (car da = a’ # a). Si d est une translation,
notonsd: V. — V: x — z+v (de vecteur v # 0), alors on a a’ = a+wv et donc aa’ = K(a'—a)+a =
Kv + a pour tout a; ainsi il suit que aa’ J/ b’ pour tout a # b. Si d est une homothétie affine,
notons d: V. — V: x +— A(z—c)+c (de centre ¢ € V et rapport A # 1), alorson a a’ = ANa—c)+c
et donc aa’ = K(a' —a)+a=K((1 - X)(c—a))+a= K(c—a)+ a=ac pour tout a; ainsi il
suite que ¢ € aa’ N bY, et puisque l'intersection de deux droites affines distinctes est au plus un

point, on a bien {c} = ad’ NbY'. O
Dans la situation de 1’énoncé, on a les images suivantes dans le plan affine contenant a,a’, b, v’ :

\\b/

On voit ainsi que les dilatations (i.e. translations et homothéties) “unifient” deux situations

importantes en géométrie affine :

Proposition 2.3.7 (Lemme du parallélogramme). Soient deuz droites distinctes et paral-
leles aa’ et bY'. Alors on a ab /| a'b’ (c’est a dire, le quadrilatére abb'a’ est un parallélogramme)

si et seulement s’il existe une (unique) translation t: V. — V telle que a’ = ta et b/ = tb.

Démonstration. 1l nous reste & montrer une implication. Soit I'unique translation t: V — V tel
que ta = a'. Notant x = tb, on cherche & montrer que x = . On a ab // a’x (par ce qui précede)
et ab // a'b’ (par hypothese), donc o'z // a'b’, donc a’x = a’b’ (car ils ont le point @’ en commun).
De méme, on a aa’ // bx (par ce qui précede) et aa’ // bb' (par hypothese), donc bz = b’ (car ils

ont le point b en commun). Ainsi {z} = d’zNbx = 'V NbY = {b'}, d’ott © = b’ comme voulu. O
L’énoncé suivant honore Thaleslﬂ de Milet (ca. —600).

Proposition 2.3.8 (Théoréme de Thales). Soient deuz droites distinctes aa’ et bb' concou-

/

rantes en un cinquiéme point c¢. Alors on a ab [/ a'b' si et seulement s’il existe une (unique)

homothétie affine h: V — V de centre c telle que a’ = ha et V/ = hb.

Démonstration. 1l nous reste a montrer une implication. Soit A: V' — V 1'unique homothétie
affine telle que hc = ¢ et ha = a/. Notant x = hb, on cherche & montrer que z = ¥'. On a
¢ € bx (par ce qui précede) et ¢ € bb' (par hypothese), donc bz = bb'. On a ab // o’z (par ce qui
précede) et ab // o't/ (par hypothese), donc a’x = a'b’ (car ils ont un point en commun). Ainsi

{z} =bxndxz=0bNdb ={b} et onaxz="> comme voulu. O

6. En grec : ©ukne; par ailleurs, en francais, on dit Milet pour ’ancienne cité grecque Mikntoc.
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2.4. Encore quelques résultats géométriques

Nous avons déja démontré le résultat suivant a 1’aide des barycentres; mais voici une démons-

tration (plus élégante et plus courte!) par les dilatations :

Proposition 2.4.1 (Théoréme de Menelaos—avec homothéties). Soit un triangle abc, et
x € bc, y € ca et z € ab trois points distincts des sommets du triangle. Notons les homothéties
h1, ho et hs déterminées par

hix=xz ethib=c, hyy=yethasc=a, hzz=zethsa=0b
et de rapports A1, Ao et A3. Alors les points x, y et z sont alignés si et seulement si A\ a3 = 1.

C

Démonstration. Notons que h; # id (pour tout i), car a, b et ¢ sont distincts. La composée de
ces trois homothéties, soit h = hghshy, est une dilatation ayant b pour point fixe : c’est donc
I’homothétie de centre b et rapport A = AgA2A;. On a toujours que hy(zy) = zy = ha(zy) (car zy
est une droite passant par le centre de hy, resp. hs), et donc hohi(zy) = zy. Aussi, hs(zy) = zy
si et seulement si z € zy (car z est le centre de hg, et seules les droites passant par le centre
de I'homothétie sont envoyées sur elles-mémes). Ainsi z € zy si et seulement si h(zy) = zy, et
puisque zy ne contient pas le point b (= le centre de h), ceci est encore équivalent a h = id, c’est
a dire A = 1. O

L’énoncé ci-dessus semble, a premiere vue, différent de I’énoncé du théoréme que nous avons
démontré a l'aide des barycentres : la-bas c’était ajasas = —f182083, et ici c’est Ay Aadg = 1.
Cette différence s’explique par le fait que, pour ag € ajas (et a1 # ag), on a d'un cbté 'unique
homothétie h de centre ag et rapport A telle que ha; = ao, et de 'autre c6té 'unique barycentre
ap = aay + Pag (donc o+ f = 1) : en comparant les deux expressions on trouve que A = —% ;
et ceci explique cela. Ainsi, en faisant un “faux” calcul a partir de A(a; — ag) + ag = ag, pour
les trois points colinéaires ag, a1, as on définit leur rapport

BRTW._\eK

ai — ap
Attention, cette “fraction” n’est qu'un symbole, et non pas une vraie proportion! Ainsi on peut

reformuler le résultat précédent comme suit :

Corollaire 2.4.2 (Théoréme de Menelaos—avec rapports). Soit un triangle abe, et x € be,
Yy € ca et z € ab trois points distincts des sommets du triangle. Alors les points x, y et z sont
alignés si et seulement si

c—r a—y b—z _1

b—z c—y a—z
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Aussi le résultat suivant, dont nous avons déja donné une démonstration a I’aide de barycentres,

peut étre énoncé avec des rapports :

Corollaire 2.4.3 (Théoréme de Ceva—avec rapports). Soit un triangle abc, et x € be,
y € ca et z € ab trois points distincts des sommets du triangle. Alors les droites ax, by et cz

sont concourantes ou paralléles si et seulement si

c—x a—y b—z 1

b—z c—y a-—z

Pour illustrer encore 'importance des dilatations (et la “dichotomie” créée par translations
et homothéties), démontrons un résultat fameux que l'on doit au francais Girard Desargues

(1591-1661), architecte et fondateur de la géométrie projective :

Proposition 2.4.4 (Axiome de Desargues—affine). Soient deux triangles disjoints abc et
a't'd tels que ad’, bb' et ¢ sont soit paralléles, soit concourantes. Si ac /| a'd’ et be JJ b'¢ alors

aussi ab /| a'l’.

Démonstration. Supposons d’abord que les trois droites aa’, bb’ et cc’ sont paralléles. Soit alors
l'unique translation ¢t: V' — V envoyant a sur a’. Par le Lemme du parallélogramme (justifié par
les hypotheses ac // a'c’ et be J/b'¢'), on a d’abord tc = ¢, et ensuite aussi th = b’ ; ainsi ab // a'b’.
Si les droites aa’, bb' et cc’ sont concourantes, alors on a “la méme démonstration” mais avec
des homothéties (et le théoreme de Thales) ! O

Le résultat ci-dessus n’est pas un “axiome” dans le cadre de la géométrie affine linéaire (que nous
pratiquons dans ce cours)—c’est tout simplement un théoréme, et nous venons d’en donner la
démonstration ! Mais dans une approche axiomatique de la géométrie affine, dépourvue de toute
algebre linéaire, on définit un plan affine (abstrait) comme la donnée d’un ensemble P de “points”

et un ensemble D de “droites”, satisfaisant aux axiomes d’incidence suivants : (i) deux points
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distincts sont contenus dans une unique droite, (ii) il existe trois points non-colinéaires, et (iii)
pour toute droite et tout point en dehors de cette droite, il existe une unique autre droite passant
par ce point et disjointe de la droite donnée (5e Postulat d’Euclide). 11 existe de tels plans affines
dans lesquels le résultat ci-dessus n’est pas satisfait — le plus célebre est le plan de Moulton, voir
[Forest Ray Moulton, A Simple Non-Desarguesian Plane Geometry, Transactions of the AMS,
1902, pp. 192-195] — et on peut alors I’ajouter comme un axiome, auquel cas on parle d’un plan

affine arguésien.

Proposition 2.4.5 (Desargues—affine, réciproque). Soient deux triangles disjoints abc et
a'b'd tels que ab J/ 'V, ac J d'd et be [/ V. Alors les droites aa’, bb' et cc’ sont soit paralléles,

soit concourantes.

Démonstration. Supposons que aa’ et bb' s’intersectent en un point . Par le théoréme de Thales,
il existe une unique homothétie affine h de centre x et envoyant a sur o', et b sur ¥’. Soit le point

" := he. La droite a'c”

est nécessairement parallele & ac et passant par o : elle est (par les
hypotheses et le “5e Postulat”) égale & a’c’. De méme, la droite b/'¢” est nécessairement paralléle
a be et passant par b’ : elle est égale & b'¢/. Puisque {¢"} = '’ N’ =d'd Nb'd ={},on a

he = " = ¢ ; ce point est donc sur la droite zc, ce qui montre qu’aussi e’ passe par x. O

Remarquons que les hypotheses des énoncés ci-dessus impliquent le parallélisme des deux plans
(a,b,c) et (a’' b, ), ces plans étant identiques lorsque abc et a’b/c’ sont coplanaires. On peut
donc voir les desssins ci-dessus “dans le plan” ou “dans ’espace”! Par ailleurs, le résultat sui-
vant est évident lorsqu’on le “voit” dans l’espace (réel) a trois dimensions, mais nécessite une

démonstration lorsqu’on le considére dans un plan :

Théoréme 2.4.6 (Théoréme de Desargues). Soient deux triangles disjoints abc et a'b'c
tels que abN a't = {r}, beNb'd = {s} et cana’ = {t}. Si ad’, bV’ et ¢’ sont concourantes

(en x disons) alors les points r, s et t sont alignés. (“Si les sommets de deuz triangles sont en
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perspective centrale alors leurs cotés sont en perspective axiale”.)

Le dessin ci-dessus montre une configuration de Desargues : il est donné par 10 points et 10 droites
qui, vus dans lespace, sont complétement déterminés par 5 plans (“en position générale”). Une
démonstration peut étre donnée par applications répétées du Théoreme de Menelaos. Pour une
démonstration élémentaire dans un plan affine arguésien abstrait (et donc parfaitement valable
dans un plan affine linéaire!), qui consiste & appliquer plusieurs fois I’Axiome de Desargues, voir
[M. Prazmowska, A proof of the projective desargues axiom in the desarguesian affine plane,
Demonstratio Mathematica 37, 2004, pp. 921-924].

Il y a un sens tres précis dans lequel le Théoréeme de Desargues ci-dessus implique I’ Axiome
de Desargues. Intuitivement, travaillant dans un plan affine, on peut accepter que deux droites
sont paralléles si et seulement si elles s’intersectent “a [’infini”. Ainsi, si on ajoute au plan
affine des points “a l'infini”, alors deux droites distinctes ont toujours un et un seul point en
commun : soit un point “affine”; soit un point “a l'infini”. On obtient alors ce qu’on appelle un
plan projectif. Si, dans le dessin ci-dessus, on s’imagine les points r, s et ¢ “a I'infini”, alors on
aab )/ d'b, ac j/ a'd et be J/ b/ ; et on récupére exactement I’énoncé “central” de 1’Axiome de
Desargues. Si, de plus, on s’imagine le point  “a I'infini”, alors on retrouve 1’énoncé “parallele”
dudit résultat. Par ailleurs, avec x “a l'infini” ou pas, on peut aussi s’imaginer seulement r “a
l'infini” : dans ce cas, ab // a'b', et la droite st n’aura pas de point “affine” en commun avec ab ou
a’b!, mais bien un point “a I'infini”, donc on trouve que st // ab. Ainsi, le Théoréme de Desargues

ci-dessus implique quatre versions affines “avec parallélisme” :

Cette observation a mené Jean-Victor Poncelet (1788-1867) a écrire son Traité des propriétés
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projectives des figures lorsqu’il était prisonier de guerre en Russie en 1812 (en tant que polytech-
nicien & la Grande Armée de Napoléon). Ajoutons qu'un autre “bonus” de la géométrie plane
projective, est qu’elle est autoduale : lorsqu’on échange “points” et “droites” dans 1’énoncé d’un
théoreme, et on garde les relations d’incidence, alors on obtient un autre théoréme valide. C’est
le cas pour le Théoréme de Desargues, et il suit que la condition nécessaire de I’énoncé ci-dessus
implique la condition suffisante! C’est pourquoi, en géométrie affine, I’Axiome de Desargues
implique sa réciproque, comme nous avons démontré.

Pour clore ce chapitre, voici encore un autre grand classique de la géométrie affine, cette fois
portant le nom de Pappusm d’Alexandrie (ca. 290-350) :

Proposition 2.4.7 (Théoréme de Pappus—affine). Soit deux droites distinctes coplanaires,
et trois points distincts sur chaque droite, disons a,b,c et a’,b',c, qui sont aussi distincts de

’éventuel point d’intersection des deuz droites. Si ab’ J/ bc' et a'b | V¢ alors aad’ /] cc.

Démonstration. Les droites coplanaires ab (contenant ¢) et a’b’ (contenant ¢’) sont soit paral-
leles, soit sécantes (en un point d, disons). Dans le premier cas on démontre le résultat avec des
translations (“deux fois le lemme du parallélogramme”), dans le deuxiéme cas avec des homo-
théties (“deux fois le théoreme de Thales”). Attention : on devra utiliser que deux translations,
resp. deux homothéties de méme centre, commutent. Pour les translations, cela revient a dire
que (V,4,0) est un groupe commutatif ; pour deux homothéties de centre ¢ € V', cela revient a

dire que (K*,-,1) est un groupe commutatif. O

Deux droites distinctes dans le plan (paralléles ou sécantes en un point) sont des cas “dégénérés”
de sections de coniques. Et en effet, le résultat ci-dessus est toujours valable lorsque les six points

a,b,c,d’, V', c se trouvent sur une ellipse, une parabole ou une hyperbole :

7. En grec : “IIdnnoc” ; en lettres latines on devrait écrire plutot “Pappos”, mais “Pappus” est la norme.
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Mieux encore, lorsqu’on ajoute des points “a I'infini” au plan affine, et on passe donc au plan pro-
jectif, non-seulement aura-t-on que deux droites distinctes s’intersectent toujours en un unique
point, mais il est aussi vrai que toutes les sections de coniques se réduisent d une ellipse. Ainsi,
avec une définition adéquate pour ‘section de conique’ en géométrie projective, le théoreme de

Pappus ci-dessus devient :

Théoréme 2.4.8 (Théoréme de Pascal). Dans un plan projectif linéaire, un hexagone est
inscrit dans une ellipse si et seulement si ses cotés opposés (prolongés en droites) se coupent en

3 points alignés.

Un trés jeune Blaise Pascal (1623-1662) a formulé ce théoréme dans son Essay pour les coniques
datant de 1640. La droite contenant les 3 points d’intersections des cotés opposés d’un hexagone
inscrit dans une conique s’appelle aujourd’hui la droite de Pascal. Six points sur une conique
définissent 60 hexagones distincts, donc 60 droites de Pascal distinctes—et ces 60 droites ont

des propriétés d’incidence remarquables. Voir les références !

La démonstration de ce résultat est hors portée de ce cours—faute de temps pour introduire
en détail la géométrie projectiveﬂ Néanmoins, on peut donner une conséquence affine de ce

résultat projectif, en remplagant & nouveau lellipse par une paire de droites distinctes (on

8. Et on peut faire mieux encore! Le résultat de Pascal se déduit d’un théoréeme de Cayley—Bacharach & propos
des courbes algébriques planes de degré 3. Et 1a on entre dans le domaine de la géométrie algébrique. Voir [D.
Eisenbud, M. Green, et J. Harris, Cayley-Bacharach Theorems and Conjectures, Bull. AMS 33 (1996), 295-324].
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“dégénere” ellipse) et en considérant un hexagone dont les sommets “alternent” entre ces deux
droites :

Corollaire 2.4.9 (Théoréme de Pappus—hexagonal). Soit deux droites distinctes copla-
naires, et trois points distincts sur chaque droite, disons a,b,c et a’,b',c, qui sont aussi distincts
de l’éventuelle intersection des deuz droites. Si ab'Na’b = {z}, bd' NV'c = {y}, et ad Nad'c = {z},

alors x, y et z sont alignés.

La droite contenant les 3 points d’intersections ci-dessus s’appelle la droite de Pappus. Remar-
quons que cette droite est bien définie pour chacune des six fagons pour dessiner un hexagone

alternant entre deux droites :

Par ailleurs, 1’énoncé (projectif) ci-dessus implique aussi des situations de “parallélisme” dans
un plan affine. Par exemple, si z est “a I'infini” alors ’énoncé dit que ab’ // a’b // yz (et de méme si
soit y, soit 2z est “a 'infini”). Ou encore, si = et y sont “a U'infini”, alors ’énoncé dit que ab’ // a’b
et b // b'c implique qu’aussi ac’ // a’c (et de méme si soit = et z, soit y et z sont “a linfini”).
Et c¢’est ainsi qu’on retrouve, finalement, le Théoreme de Pappus (“affine”) qui était le point de

départ de cette discussion !

2.5. Exercices

Exercice 2.5.1 (Homomorphisme de groupes). Soient deux groupes G et H. Montrer
que tout application h: G — H respectant 'opération binaire de G, respecte aussi 'opération

nullaire et 'opération unaire de G; il s’agit donc d’'un homomorphisme de groupes.

9. On peut parfaitement considérer des hexagones dont les sommets sont placés n’importe comment sur deux

droites, mais on s’apercoit vite que I’on n’obient que des cas triviaux.
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Exercice 2.5.2 (Sous-groupe normal). Montrer qu'un sous-groupe N d’un groupe G est
normal si et seulement si N = ker(f) pour un homomorphisme de groupes f: G — H. Indica-
tion : étant donné N < G, on peut considérer le quotient ¢: G — G/N. (Que se passe-t-il pour

un sous-groupe “non-normal” 7)

Exercice 2.5.3 (Suite exacte de groupes). On dit qu'une suite (éventuellement infini)

d’homomorphismes entre groupes, disons

Je—1 G fx G fr1 Grn Jr42
est exacte si ker(f;+1) = im(f;) (pour tout ¢). Notons 1 pour le groupe trivial. Montrer que les
suites
l—wa-tonm  e4.m 1 G-r.m 1

sont exactes si et seulement si f est injectif, g est surjectif, et h est bijectif; pour simplifier ces

diagrammes on les note souvent

G>L>H G—g»H G>L»H

Exercice 2.5.4 (Suite exacte courte de groupes). Montrer que la donnée d’une suite exacte

courte de groupes, soit une suite exacte

N>L>G*p»Q,

est “la méme chose” que la donnée d’un sous-groupe normal i(N) < G et le quotient G/i(N).
Attention, les groupes N et @) ne déterminent pas le groupe G'! Pour voir cela, montrer que les

suites
Z)(4) —— Z/(4) X Z)(2) — Z/(2) et Z)(4) —— Z/(8) —» Z/(2)
(owonaZ/(4) — Z/(8): x — 2x et sinon les homomorphismes évidents) sont exactes.

Exercice 2.5.5 (Suite exacte courte scindée et produit semidirect de groupes). Soit
N < G un sous-groupe normal et H < G un sous-groupe quelconque d’'un groupe G = (G, -, 1).
Montrer I’équivalence des assertions suivantes :

(1) NnH={1l} et G=NH ={nh|ne€ N,he H},

(2) la composée de 'inclusion H — G avec le quotient G—»G/N est un isomorphisme,

(3) il existe un homomorphisme f: G — H qui est l'identité sur H et dont N est le noyau,

—
(4) il y a une suite exacte courte scindée N —— G —» H .

f

Dans ce cas, on dit que G est le produit semidirect de N et H, noté G = N x H. Montrer que,
dans ce cas, ’application
®: Nx H—G: (n,h)— nh

est un isomorphisme de groupes pour la loi de groupe
(n,h) - (0, 1) := (n(hn'h™Y), hR)
(“tordue par une conjugaison”) sur son domaine. (Ainsi les extrémités d’une suite exacte courte

scindée déterminent le groupe au milieu!)
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Solution. Pour N <4 G et H < G, notons le quotient g: G—»G/N: g — [g] et 'inclusion
i: H~—G: h— h. Pour la composée goi: H— G/N on a

ker(goi)={he H|[h]=[1]} =NNH et im(qoi) ={[h] | h € H}.

Ainsi, g o i est injectif si et seulement si NN H = {1}; et q oi est surjectif si et seulement si
pour tout g € G il existe un h € H tel que [g] = [h], si et seulement si G = NH. Cela démontre
(1 < 2). Supposons maintenant la validité de (2), et posons f = (goi) ! oq: G — H, alors

ker(f) ={g€ G |(q01) " (a(9)) =1} = {9 € G | alg) = (g0 )(1)}
={geCG|lg)=[1} =GNN=N.

De plus, pour h € H on a f(h) = (qoi)~*(q(h)) = (goi)~*([h]) = h. Ainsi f est 'homomorphisme
demandé en (3). Réciproquement, un homomorphisme f: G — H de noyau ker(f) = N et tel
que la composée foi: H — H est I'identité, détermine un isomorphisme f: G/N — im(f) = H
satisfaisant & foq = f (par la propriété universelle du quotient). On peut calculer que fogoi =
foi=1idyg donc goi = ?_1 est aussi un isomorphisme. Ainsi on obtient (2). L’équivalence

(3 & 4) est immédiate : c’est une question de terminologie. ]

Exercice 2.5.6 (Images directe et réciproque). Soit une application linéaire f: V — W
entre espaces vectoriels. Montrer que l'image directe d’un sous-espace vectoriel de V' est un
sous-espace vectoriel de W ; et montrer que I'image réciproque d’un sous-espace vectoriel de W

est un sous-espace vectoriel de V.

Exercice 2.5.7 (Espace isomorphe implique groupe linéaire isomorphe). Montrer que
tout isomorphisme d’espaces vectoriels V' = W (sur un méme corps, donc) induit un isomor-
phisme de groupes GL(V) = GL(W).

Exercice 2.5.8 (Réciproque du précédent). Soit un espace vectoriel V' de dimension n > 1.
Montrer que, pour toute base z1, ..., z, de V, il existe un unique f € GL(V) tel que f(z;) = =;
(et identifier cet unique élément). Montrer que, pour tout x1,...,xx € V avec k < n, il existe au
moins deux f,g € GL(V) tels que f(x;) = x; = g(x;). Conclure que GL(V) “connait” dim(V),
et détermine ainsi V' & isomorphisme pres (si le corps K est donné). (Sur le corps Fy, I'espace

nul & le méme groupe linéaire que la droite ; mais bien siir ces espaces ne sont pas isomorphes.)

Exercice 2.5.9 (Non-fonctorialité de GL). Montrer que V — GL(V) ne peut pas étre I'ap-
plication d’objets d'un foncteur de la catégorie Vecy, a la catégorie des groupes. Indication : on
cherche a associer, de maniére fonctorielle, a toute application linéaire f: V' — W, un homomor-
phisme de groupes GL(f): GL(V) — GL(W). Mais alors la rétraction r: F2 — Fo: (z,y) +
(de section s = (z,0)) devrait induire une rétraction GL(F3) — GL(Fs). Mais GL(F2) n’a pas
de sous-groupe normal non-trivial. (Plus généralement, pour tout K on peut montrer qu'’il n’y

a pas de foncteur possible.)

Exercice 2.5.10 (Non-fonctorialité de Z). Montrer que G — Z(G) ne peut pas étre 'ap-

plication d’objets d’un foncteur de la catégorie des groupes a elle-méme. Indication : si c’est un
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foncteur, alors la composée (x) — (y,z) — (z) entre groupes libres, déterminée par x — y et
y,z — x, est I'identité, s’envoie sur une composée Z(x) — Z(y,z) — Z{(x) qui doit aussi étre
l'identité. Mais Z(z) = (x) et Z(y, z) = {1}, donc cette composée est ’'homomorphisme nul, qui

est différent de ’homomorphisme identité.

Exercice 2.5.11 (Groupes de matrices). Rappeler la “description matricielle” d’une appli-
cation linéaire f: V — W, et par conséquent les isomorphismes GL(V) = GL(n,K), SL(V) =
SL(n,K) et H(V)= H(n, K).

Exercice 2.5.12 (Le groupe symétrique est linéaire). Montrer que Bij(X) est un groupe
linéaire (sur un corps quelconque) quand X est un ensemble fini. Indication : représenter une

bijection de {1, ...,n} par une matrice inversible n x n dont les éléments sont 0 ou 1.

Exercice 2.5.13 (Projection linéaire). Soit V' un espace vectoriel. Montrer qu'un endomor-
phisme linéaire p: V' — V satisfait a p o p = p si et seulement s’il existe une décomposition
V =FE @ F telle que p(z) = g (ou z = xg + xF est I'unique fagon d’écrire x € V' comme une
somme d’un élément de E et un élément de F). On dit alors que p est la projection linéaire sur
E et de direction F. Que se passe-t-il si E={0}?si E=V7

Exercice 2.5.14 (Symétrie linéaire). Soit V' un espace vectoriel. Montrer qu'un endomor-
phisme linéaire s: V' — V satisfait a s o s = idy si et seulement s’il existe une décomposition
V =E® F telle que s(x) = xp —zp (o0 x = g + xF est I'unique fagon d’écrire x € V' comme
une somme d’un élément de E et un élément de F'). On dit alors que s est la symétrie linéaire
d’axe E et de direction F'. Que se passe-t-ilsi E={0}7si E=V7?

Exercice 2.5.15 (Projection et symétrie linéaires). Soit V' un espace vectoriel et supposons
que car(K) # 2. Montrer : si p est une projection alors s = 2p — id est une symétrie; si s est une

symétrie alors p = %(s + id) est une projection. Ainsi on a établi des bijections entre
{projections} <— {symétries} <+— {décompositions}.

Montrer que toute symétrie est un élément de GL(V). Est-ce un élément de SL(V)? Et les

projections ? (Et que se passe-t-il en caracteristique 2 7)

Exercice 2.5.16 (Matrices de projections et symétries linéaires). Montrer que p: V — V
est une projection linéaire d’un espace vectoriel si et seulement s’il existe une base de V pour
laquelle la matrice de P est une matrice diagonale n’ayant que des 1 et des 0 sur sa diagonale.
Montrer que s: V — V est une symétrie linéaire si et seulement s’il existe une base de V' pour

laquelle la matrice de s est une matrice diagonale n’ayant que des 1 et des —1 sur sa diagonale.

Exercice 2.5.17 (Généralisation du précédent : affinités linéaires). Soit V' un espace
vectoriel. Montrer qu’une application linéaire f: V — V est diagonalisable ayant deux valeurs
propres si et seulement s’il existe une décomposition V = E@ F' et des scalaires A, u € K tel que
f(z) =Xxp + pxp (ou x = xp + xp est I'unique fagon d’écrire x € V' comme une somme d’un
élément de F et un élément de F'). Lorsque A = 1, on dit que f est une affinité linéaire sur E (ou

d’axe E, ou de base E), de direction F', et de rapport u. Montrer que les projections, les symétries
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et les homothéties sont des affinités linéaires. (Dans certaines références, le mot “dilatation” est
utilisé pour une affinité linéaire dont la direction est de dimension 1. Ce n’est pas notre choix

dans ce cours, une dilatation étant pour nous un élément du groupe D(V) =T(V) x H(V).)

Exercice 2.5.18 (Scinder le déterminant). Ayant choisie une base {ei,...,e,} d’un espace
vectoriel V', on peut définir s: K* — GL(V) par s(a)(e1) = aey et s(e;) = e; pour i # 1. Au

niveau matriciel, cela revient & définir s': K* — GL(n, K) en envoyant o € K* a la matrice

(%

1

(et on remplit avec des 0). Montrer qu’on a alors un diagramme commutatif des suite exactes

courtes scindées de groupes,

S
SL(V)— GL(V) ——» K*

|17

SL(n,K)—— GL(n, K) It K~
e

dont les fleches verticales sont des isomorphismes. Conclure que GL(V) = SL(V) x s(K*) (pour

toute section s); et de méme au niveau matriciel.

Exercice 2.5.19 (Scindage d’une suite exacte courte). Soit V' un espace vectoriel de
dimension n et H (V') son groupe d’homothéties. Par composition de I'homomorphisme surjectif
det: GL(V) — K* avec I'isomorphisme hom: K* — H(V) — K*: A — Aid, on produit la suite
exacte courte

hom o det

SL(V)——GL(V) HV).

Montrer que cette suite est scindée par linclusion de H(V') dans GL(V) si et seulement si
Papplication K* — K*: a +— ™ est un homomorphisme de groupes. En déduire que, dans
ce cas, GL(V) = SL(V) x H(V). Est-ce le cas pour K = R? K = C? K = F,? (Répondre

éventuellement par une condition sur la dimension de V.)

Exercice 2.5.20 (Centre du groupe linéaire spécial). Soit un espace vectoriel V' de di-
mension n. Montrer que Z(SL(V)) = SL(V)N H(V) (observer que dans la démonstration pour
déterminer Z(GL(V)) on a utilisé des éléments de SL(V)). En déduire que Z(SL(V)) est iso-

morphe au sous-groupe de K* des racines n-iemes de I'unité.

Exercice 2.5.21 (Image d’un sous-espace affine engendré). Soit une application affine
g: V — W entre espaces vectoriels. Montrer que, pour tout {ao, ..., ax }, 'image par g de I’espace
affine engendré (ao, ..., aj) est U'espace affine engendré (gay, ..., gax). En déduire une démonstra-
tion alternative pour la Proposition

Exercice 2.5.22 (Linéaire parmi affine). Montrer que g € GA(V) est dans le sous-groupe
GL(V) C GA(V) si et seulement si g0 = 0.
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Exercice 2.5.23 (Expression matricielle d’une application affine). Soient deux espaces

vectoriels V' et W, munis de bases vectorielles {e1, ..., e, }, resp. {d1, ..., d, }. Donner l'expression

matricielle d’une application affine g = ¢f: V — W par rapport a ces bases. (Faire séparément

la partie linéaire f: V — W et la translation ¢t = t,: W — W, puis composer.)

Exercice 2.5.24 (Déterminer une application affine). Pour les applications suivantes,

déterminer si ce sont des applications affines. Si c’est le cas, les écrire sous la forme g = to f

avec t une translation et f une application linéaire. Identifier les automorphismes affines.

— 1
1. g:RQ—HRz: . — v+
Y —2x —y+2

2.

9.
10.

g:
g:
g:

: R2 - R2:

o)
wow ()= (0]
o)

¥

4m—2y—3>

- R2 — R2: . —> 3y +9
Y 3xr —2

3y+5

:R2 — R3: . — | 3z —2
Y 3r+1

R3S R2: |y |~

x
—2r+y+z+1
r+y—2z—-1

T —2r+y+z+1

RESR: [yl = | z—2y+2+1

z r+y—2z-1
V — V: x> a, pour un point a € V fixé.
V — V:z+ (milieu de az), pour un point a € V fixé.

V — V:z — (barycentre de (a, 1), (b3), (z,1)), pour deux points a,b € V' fixés.

Exercice 2.5.25 (Trouver une application affine). Les informations ci-dessous permettent-

elles de déterminer une (unique) application affine g = ¢ o f? Si oui, donner sa description

matricielle.

1.

2
3
4.
)

g:
g: R? = R3, ¢(0,1,0) = (0,2,0) et g n’a aucun point fixe.

g

g:

g: Rg _> Rg? g(()?O?O) = (17273)7 9(07172) = (17476)7 9(17072) = (17375)

R? — R?, g(0,1) = (0,1) et g n’a pas d’autre point fixe.

: R? — R? les seuls points fixes de g sont (0,0) et (1,1).

R? — R2, ¢(0,0) = (1,3), g(1,3) = (3,1), g(3,1) = (0,0).

Exercice 2.5.26 (Le groupe affine—description matricielle). Soit un espace vectoriel V

(sur un corps K) muni d’une base {ei, ..., e, }. Utiliser les isomorphismes de groupes GA(V') =

~Y
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T(V)xGL(V) =V x GL(V) pour montrer I"isomorphisme de GA(V') avec le groupe donné par
I’ensemble
{(A,b) | A€ GL(n,K),b € K™}

muni de I'opération binaire (A’,b') x (A,b) = (A’A, A’b+b'). On note ce groupe GA(n, K).

Exercice 2.5.27 (Le groupe affine est linéaire). Montrer que ’ensemble des matrices de la

(o)

avec A € GL(n,K), b € K™ et O = (0---0) € K'*" est un sous-groupe de GL(n + 1, K),
isomorphe au groupe GA(n, K) de 'exercice précédent. Ainsi on a des sous-groupes GL(n, K) <
GA(n, K) < GL(n + 1, K).

forme

Exercice 2.5.28 (Le groupe affine est linéaire—bis). Dans K" !, fixons I’hyperplan affine
H = {(x1,...,;xn,1) € K"}, Soit I'isomorphisme GL(K"*!) = GL(n + 1, K) déterminé par la
base canonique de K", A quel sous-groupe de matrices s’identifie alors le sous-groupe laissant

(globalement) invariant ’hyperplan H ? Indication : écrire f € GL(K™!) comme

s T (A D T _ [Az +bxp
Tn+1 c d Tn+1 cr + dzy 41
ot A€ K" x e K™ be K™l ce K" et d € K. Exprimer que tout (z1,...,2,,1) est

envoyé sur un (yi, ..., Yn, 1), et en déduire que ¢ = O et d = 1.

Exercice 2.5.29 (GA(n, K) est un sous-groupe de PGL(n+1,K)). On reprend le résultat
d’un exercice précédent : on considere le groupe affine (“version matricielle”) GA(n, K) comme

sous-groupe de GL(n + 1, K) des matrices de la forme

o 1)

Calculer l'intersection avec le centre H(n+ 1, K) = Z(GL(n+1, K)), et conclure que GA(n, K)
est aussi un sous-groupe du quotient GL(n + 1, K)/H(n + 1, K). Ce dernier est la “version

matricielle” du groupe projectif linéaire général (en dimension n + 1), noté PGL(n + 1, K).

Exercice 2.5.30 (Sous-groupes du groupe affine). Soit un espace vectoriel Vet G < GL(V)
un sous-groupe donné (autrement dit, G est un groupe linéaire). Montrer que T'(V) x G := {g =
tof|teT(V),f € G} est un sous-groupe de GA(V) = T(V) x GL(V). Observer que 'on a

une “sous-suite” exacte courte scindée (par Iinclusion évidente)
TWV)—TV)xG —» G
T(V) — GA(V) —» GL(V)

Observer que T'(V) x G est un groupe linéaire (attention aux dimensions!). Repérer les exemples

de cette construction générale dans le cours (voir aussi les exercices ci-dessous).
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Exercice 2.5.31 (Groupe affine spécial). Soit un espace vectoriel V' de dimension n sur un
corps K. Pour le groupe linéaire spécial SL(V) < GL(V'), décrire explicitement les éléments du
groupe affine spécial de V', défini par SA(V) :=T(V) x SL(V). En donner une description par

des matrices n X n, ainsi qu'une description par des matrices (n + 1) x (n + 1).

Exercice 2.5.32 (Groupe des dilatations). Soit un espace vectoriel V' de dimension n sur
un corps K. Pour le groupe des homothéties H(V) < GL(V'), décrire explicitement les éléments
du groupe des dilatations de V', défini par D(V') := T(V) x H(V). En donner une description

par des matrices n X n, ainsi qu’une description par des matrices (n + 1) x (n + 1).

Exercice 2.5.33 (Groupe des symétries centrales affines). Soit un espace vectoriel V
de dimension n sur un corps K de caractéristique # 2. Déterminer le sous-groupe G < GL(V)
engendré par la symétrie centrale linéaire 0: V' — V': x — —x. Montrer que c¢’est un sous-groupe
du groupe H (V') des homothéties linéaires. Est-ce un sous-groupe de SL(V')? Décrire ensuite
explicitement les éléments du groupe des symétries centrales affines de V, défini par T(V') x G.
En donner une description par des matrices n X n, ainsi qu’'une description par des matrices

(n+1) x (n+1). Montrer que c’est un sous-groupe de D(V'). Est-ce un sous-groupe de SA(V)?

Exercice 2.5.34 (Points fixes (1)). Montrer que a € V est un point fixe d’'un endomorphisme
affine g: V. — V si et seulement s’il existe un endomorphisme linéaire f: V. — V tel que
g = tqft_o. Montrer que I’ensemble des automorphismes affines de V' ayant a € V comme point

fixe est un sous-groupe de GA(V).

Exercice 2.5.35 (Points fixes (2)). Soit un endomorphisme affine g: V' — V. Montrer que
I’ensemble des points fixes de g = to f est un sous-espace affine, dont la direction est I’ensemble

des points fixes de f.

Exercice 2.5.36 (Conjugués et commutants d’une translation). Etant donné une trans-
lation t € T(V) C GA(V), décrire ses conjugués (gtg—') et ses commutants (gt = tg) dans
GA(V).

Exercice 2.5.37 (Commutation de dilatations). Montrer que deux dilatations g, ¢’ € D(V)
commutent si et seulement si, soit I'une est I'identité, soit ce sont deux translations, soit ce sont

deux homothéties affines de méme centre.

Exercice 2.5.38 (Homothéties linéaires et affines). Montrer que f € GL(V) est une
homothétie (linéaire) si et seulement si f envoie toute droite vectorielle sur elle-méme. Montrer
que g € GA(V) est une homothétie (affine) de centre c si et seulement si g fixe le point c et g
envoie toute toute droite affine passant par ¢ sur elle-méme. (Si dim(V) > 2 alors la condition
que g fixe le point ¢ suit de la condition que g envoie toute toute droite affine passant par ¢ sur

elle-méme : il suffit de considérer deux droites distinctes passant par c.)

Exercice 2.5.39 (Homothéties affines de méme centre). Montrer que 'ensemble des

homothéties affines ayant un méme centre est un sous-groupe commutatif de D(V').
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Exercice 2.5.40 (Groupe affine d’une droite). Montrer que, si V' est un espace vectoriel
de dimension 1, alors GA(V) = D(V) : les seules automorphismes affines d’une droite sont les

translations et les homothéties affines.

Exercice 2.5.41 (Déterminer une homothétie). Soient deux points a # b dans un espace
vectoriel V' sur un corps K. Montrer que, pour tout k € K \ {0, 1}, il existe une et une seule
homothétie affine de rapport k envoyant a sur b, et déterminer son centre. (Quel est le probleme

pour k € {0,1}7) Spécifier la situation lorsque x = —1.

Exercice 2.5.42 (Centre du groupe affine). Montrer que, si h: G — H est un homomor-
phisme surjectif de groupes, alors h(Z(G)) = Z(H). En déduire que, si g € Z(GA(V)) alors
g € D(V); on peut donc écrire gz = Az + a pour a € V et A € K*. On suppose désormais que
K # Fy. Montrer qu’un tel g commute avec toutes les translations et toutes les homothéties si
et seulement si g = id. Conclure que Z(GA(V)) = {id}. (Que se passe-t-il pour K = Fy ?)

Solution. Soit gr = Az + a pour a € V et A € K*. Pour tout b € V, on doit avoir gt, = t3g,
donc en particulier gt;0 = ;g0 = a + b, mais aussi gt;,0 = gb = Ab + a; il suit donc que A = 1.
Ensuite, supposant que g = t, € T(V) commute avec une homothétie h = pid (avec u # 1), on

a en particulier a = gh0O = hg0 = pa, et donc a = 0. Ainsi g =ty = id. U

Exercice 2.5.43 (Applications affines et rapports). Montrer qu'une application g: V. — W
entre espaces vectoriels sur un corps K est affine si et seulement si elle préserve ’alignement et

le rapport de tout triplet de points.

Exercice 2.5.44 (Théoréme fondamental de la géométrie affine réelle). On peut mon-
trer que, si V' est un espace vectoriel de dimension n > 2 sur le corps K = R, alors une bijection
g: V — V est un automorphisme affine si et seulement si g envoie tout triplet de points alignés
sur un triplet de points alignés. Une démonstration (un peu longue mais élémentaire) se trouve

dans les références.

Exercice 2.5.45 (Image d’un parallélogramme). Montrer que I'image par une applica-
tion affine injective d’un parallélogramme est toujours un parallélogramme. Et si ’application
n’est pas injective 7 L’image d’un quadrilatere non-parallélogramme peut-elle étre un parallélo-

gramme ?

Exercice 2.5.46 (Une composée de symétries centrales affines). Soit un triangle non-
applati abe dans un espace affine sur un corps K tel que car(K) # 2, et notons les milieux o’ de
be, V' de ac et ¢ de ab.

b/

a c

Notons par s, la la symétrie centrale affine de centre p, c’est a dire ’homothétie de centre p et

rapport —1. Déterminer alors sy o Sy et Sor 0 Sy 0 S/
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Exercice 2.5.47 (Retourner un triangle). Soit un triangle abc dans un plan affine sur un
corps tel que car(K) ¢ {2,3}, et notons g son isobarycentre ; par un exercice précédent, g est
donc aussi I'isobarycentre du triangle a’b’c’ dont les sommets sont les milieux des segments be, ca
et ab. Montrer que I’automorphisme affine déterminé par abc — a’b’c’ est ’homothétie de centre
g et rapport —%. Montrer que, réciproquement, les sommets d’un triangle abc sont toujours les
milieux des cotés d’un unique autre triangle a”b”c¢”. En déduire que les cotés des deux triangles

ainsi emboités sont 2-a-2 paralleles.

Exercice 2.5.48 (Axiome de Desargues—application). Tracer ci-dessous la droite passant
par le point donné et concourante avec les deux droites données (et bien siir le point d’intersection

de ces trois droites se trouve “en dehors” de la page) :

_

Exercice 2.5.49 (Projection et symétrie affines). Soit un espace vectoriel V, et A, B €
V' deux sous-espaces affines supplémentaires; ainsi on a (par définition) que V' = Ay & By,
et 'intersection de A et B est (nécessairement) un singleton, soit {c} = A N B. On définit
I’application affine

g=tcofot,

ou f: V — V est la projection, resp. la symétrie, linéaire d’axe Ag et de direction By (voir un
exercice précédent). On dit alors que g est la projection (resp. symétrie) affine d’axe A et de

direction B. Voici une illustration d’une projection affine et d’'une symétrie affine dans un plan
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affine :

Montrer qu'une application affine g: V' — V est une projection affine si et seulement si gog = g,
si et seulement si g admet au moins un point fixe et sa partie linéaire est une projection linéaire,
si et seulement si g = t,0 f avec fo f = f et fa =0 (et indiquer alors I’axe et la direction de g).
Montrer qu’une application affine g: V' — V est une symétrie affine si et seulement si go g = id,
si et seulement si g admet au moins un point fixe et sa partie linéaire est une symétrie linéaire,

si et seulement si g =t, o f avec fo f =id et fa = —a (et indiquer I'axe et la direction de g).

Solution. On donne 'argument pour les projections ; 'argument pour les symétries est similaire.
Si on pose g =t.o fot_. avec f une projection linéaire, alors g est une application affine fixant
le point ¢ et telle que gog = (tco fot_c)o(tcofot_o)=t.ofofot_o=t.ofot_.=gcar
fof=f (voir un exercice précédent). Réciproquement, pour une application affine g = t, o f
ona gog = gsietseulement si (t,0 f)o(tqo f) =ts0 f, si et seulement si t,4 ro0(fof) =t,0f,
si et seulement si a + fa =a et fo f = f, si et seulement si f est une projection linéaire (voir
un exercice précédent) et fa = 0. On peut alors écrire g = t, o f ot_,, montrant que g fixe le
point a. L’axe et la direction de g sont alors A = im(f)+a et B = ker(f) (ou toute autre droite
affine parallele & B). O

Exercice 2.5.50 (Projection affine—bis). Soit un espace vectoriel V, et A,B € V deux
sous-espaces affines supplémentaires. Montrer que la projection affine sur A de direction B est
exactement ’application p: V' — V qui envoie z € V sur 'unique point d’intersection de A

avec l'unique sous-espace affine paralléle & B et passant par z. (Noter que seule la direction du
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sous-espace affine B est importante!)

B T —
—... A
e
..%'

Voici-dessus deux illustrations dans un espace (réel) a trois dimensions : on projéte sur un plan

parallelement & une droite, ou on projéte sur une droite parallelement a un plan.

Solution. Supposons d’abord que A et B sont des sous-espaces vectoriels supplémentaires de V.
Pour un point x € V on a donc une unique décomposition x = x4 4+ xp et la projection linéaire
d’axe A et direction B est p(x) = z4. Mais x4 = x — xp est a la fois un élément du sous-espace
vectoriel A et du sous-espace affine B + x (car —xp € B). Ainsi, x4 est également l'unique
point d’intersection de A et B 4+ z. Supposons maintenant que A et B sont des sous-espaces
affines supplémentaires de V' ; notons ¢ leur unique point d’intersection, ainsi on a B = By + ¢
et A = Ag + c. Pour un point 2 on calcule maintenant 'intersection du sous-espace A avec le
sous-espace parallele a B et passant par x, en utilisant que la translation par c¢ est bijective et

preserve donc les intersections :
AN(Bo+x)=(Ag+c)N(Bo+(x—c)+c)=(AgN(By+ (x —¢))) +c.

Ainsi on voit que cette intersection contient un unique point, a savoir t.(po(t—.(z)) ol py est la
projection linéaire d’axe Ag et de direction By. Autrement dit, p = t. o pg o t_. est bel et bien

la projection affine d’axe A et direction B. O

Exercice 2.5.51 (Symeétrie affine—bis). Soit un espace vectoriel V' sur un corps K de
caractéristique différent de 2, et A, B € V deux sous-espaces affines supplémentaires. Montrer
que la symétrie affine d’axe A et de direction B est exactement 'application s: V. — V qui
envoie z € V sur l'unique point 2’ € V' tel que la projection affine (sur A et de direction B) de
x est le milieu de = et z’/. Autrement dit, si z € A alors 2’ = x et si x € A alors I'unique point

d’intersection de xz’ avec A est le milieu de x et a’. (Ici aussi, seule la direction du sous-espace
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affine B est importante!) Voici une illustration dans le plan affine réel :

Exercice 2.5.52 (Projections dans un triangle). Soit un triangle non-aplati abc dans un
plan affine, et notons p; la projection sur bc parallelement a ca, p2 la projection sur ca paralle-
lement & ab, et p3 la projection sur ab parallelement & be. Pour p = p3 o pa o p1, calculer p(a) et

p(b). Que peut-on alors dire de p(z) et (pop)(x) pour x € ab?

b

Exercice 2.5.53 (Thales—avec rapports). Reformuler et démontrer le Théoreme de Thales

dans le plan affine a I'aide de rapports et de la projection affine sur ca de direction ab.

Exercice 2.5.54 (Ceva “paralléle”—avec rapports). Démontrer la partie “parallele” du

Théoreme de Ceva dans le plan affine a ’aide de la projection affine sur ab de direction ax.

)
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Exercice 2.5.55 (Théoréme de Thales—généralisation). Soient trois hyperplans paralléles
Hy, Hy et H3 d’un espace vectoriel V', et deux droites D et D’ intersectant ces hyperplans aux
points a1, ag, as, resp. aj, ah, ay. Utiliser la projection affine sur D de direction H; pour

formuler et démontrer une généralisation du Théoreme de Thales. (On retrouve le théoreme

/

usuel lorsqu’on suppose que a1 = a}.)

Exercice 2.5.56 (Démonstration du Théoréme de Desargues). Pour démontrer le Théo-

reme de Desargues dans un plan affine, déssinons la configuration de Desargues comme suit :

On veut montrer que les triangles abc et a’b'¢’ sont en perspective centrale (aa’ Mbb' Nec’ = {x}) si
et seulement s’ils sont en perspective axiale (r € st). On le fera sous 'hypothése supplémentaire
que “rien n’est parallele”, comme suit.

On suppose d’abord que les triangles abc et a’b’'c’ sont en perspective centrale, et que les
cOtés respectifs s’intersectent en r, s et ¢ (donc pas de parallélisme). Appliquer le Théoreme de

Menelaos (avec les rapports) aux trois premiers triangles ci-dessous pour conclure que r € st
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par le quatrieme triangle :

Réciproquement, supposons que abc et a’b’'c’ sont en perspective axiale et que b’ Ned = {z}
(donc pas de parallélisme). Considérer les triangles tcd’ et rbb’, qui sont alors en perspective

centrale (de s), et conclure par la premiére partie.

(Lorsqu’il y a parallélisme, on peut trouver une démonstration adaptée pour chaque situation.)

Exercice 2.5.57 (Démonstration du Théoréme de Pappus—hexagonal). On va démon-
trer le Théoreme de Pappus sous ’hypotheése supplémentaire “qu’il n’y a pas de parallélisme”

entre les cotés de I’hexagone. C’est a dire, on considére un hexagone (avec les notations du
Théoréme [2.4.9)) tel que, en plus, {p} =d'bNbc, {¢} =ad Nbcet {r} =dbNtc existent :

.‘:“‘..
T
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Appliquer le Théoreme de Menelaos (avec rapports) cing fois au triangle pgr, comme suggéré

par les cinq premiers dessins

Qe

puis conclure que x € yz par le sixiéme triangle. (On peut donner des démonstrations adaptées

lorsqu’il y a parallélisme de cotés.)

Exercice 2.5.58 (Division harmonique). Dans un espace affine, soit une droite ab et deux

points ¢,d € ab qui ne sont pas le milieu de ab. Montrer que = = —‘gf_g si et seulement

si, lorsque ¢ est le barycentre de (a,«) et (b, 3), alors d est le barycentre de (a,—a) et (b, ).

(Pourquoi doit-on supposer que ¢ et d ne sont pas le milieu de ab?)

d

On dit alors que a, b, ¢,d sont en division harmonique, ou encore que c et d divisent harmoni-
quement le segment ab, ou encore que d est le point conjugé harmonique de ¢ par rapport a ab.
Ecrire cette definition en termes de homothéties (de centres ¢ et d). Montrer que I'image d’une

division harmonique par une application affine est toujours une division harmonique.

Exercice 2.5.59 (Birapport). Pour quatre points a, b, ¢, d d'un espace affine sur un corps K,

on définit leur birapport (anglais : cross-ratio) comme le “rapport des rapports” :

a—c
[a,b;c,d] = b%fi c K.
b—d
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Ainsi, on a une division harmonique lorsque [a, b; ¢, d] = —1. Quand a-t-on que [a,b;c,d] = 17
Montrer que toute application affine préserve les birapports. Calculer le birapport quand on
connait les coordonnées barycentriques de ¢ et d par rapport a {a,b}. Comment change le

birapport sous les diverses permutations de a, b, c et d?

Exercice 2.5.60 (Quadrilatére complet et division harmonique). Soit un quadrilatére
complet dans un espace affine (que 1’on considére comme la donnée de quatre droites et six som-
mets). Montrer que chaque diagonale coupe les deux autres diagonales et déduire des théorémes
de Menelaos et Ceva que les deux points d’intersection divisent harmoniquement le segment

défini par les deux sommets de passage.

Indication : appliquer les théoremes de Menelaos et Ceva dans les situations suivantes :

Par ailleurs, étant donné trois points sur un segment, on peut construire le quatrieme point

d’une division harmonique en construisant un quadrilatere complet adéquat.

Exercice 2.5.61 (Birapport—un lemme). Supposons que, dans un espace affine, deux

droites concourrantes coupent trois droites concourrantes :
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Appliquer deux fois le Théoreme de Menelaos (et permuter au besoin les points dans les birap-

ports) pour vérifier que [a, b; ¢, d] = [a,b; ¢, d].

Exercice 2.5.62 (Birapport de droites concourrantes). Montrer que, lorsque une droite
affine coupe quatre droites affines concourrantes, alors le birapport des quatre points d’intersec-

tions ne dépend pas de la droite sécante choisie :

(Appliquer deux fois le résultat de I'exercice précédent, comme suggéré par le deuxiéme dessin.)
Les birapports sont utilisés en géométrie projective, car (comme le suggere ce résultat) ils sont
préservés par les projections centrales (qui ne préservent pas les rapports!). Ces résultats sont
centraux dans les formidables livres de Pappos d’Alexandrie (290-350), voir aussi [Pappus of
Alexandria, Book 7 of the Collection. Ed., with transl. and comment. by Alexander Jones,

Sources in the History of Mathematics and Physical Sciences 8, Springer-Verlag (1986)].

Exercice 2.5.63 (Convexité et demi-espaces). Soit V' un espace affine réel. Pour deux points
a,b € V, on définit le segment [ab] = {aa + b | 0 < o, 8 < 1}, et on dit qu'un sous-ensemble
X C V est conveze si, pour tout a,b € X, aussi [ab] C X. Soit maintenant un hyperplan affine
H € V; on peut supposer que, par rapport a une base e1, ..., e, de V, I’hyperplan est d’équation

cartésienne x,, = t. Toujours par rapport a cette base, définissons maintenant
Hf={z eV |z, >t} et H ={zeV |z, <t}

Montrer que V. = H™ W H W H~ est une partition (ensembliste) en parties convexes telle que,
pour tout a € H™ et b € H™, le segment [ab] contient exactement un point dans H. Ainsi on

peut conclure que tout hyperplan affine H détermine des uniques demi-espaces H' et H™.

Exercice 2.5.64 (Théoréme de Pasch). Soit un triangle abc dans un plan affine réel V. Le
périmétre de abe est, par définition, [ab] U [bc] U [ca]. Montrer que toute droite affine D C V
intersectant le périmetre de abc mais ne contenant aucun sommet de abc, intersecte le périmetre
en exactement deux points. Indication : les hypotheses assurent que exactement deux sommets

du triangle se trouvent dans un méme demi-espace déterminé par D.
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3. Isométries

3.1. Le groupe euclidien
L’espace vectoriel réel R? est muni du produit scalaire “usuel”,

(w1, 22) - (Y1,92) = T1Y1 + T2y,

qui permet d’exprimer la notion de distance euclidienne entre deux points :

dist((x1,22), (y1,32)) = (21, 22) = (wr.92) | o (21, 22)[| = \/(21,22) - (21, 2).

C’est dans ce plan euclidien que nous avons démontré, dans le cours de Géométrie en L2,
plusieurs résultats classiques de la géométrie euclidienne plane. Pour situer ces notions dans le

cadre plus général de la géométrie affine, définissons :

Définition 3.1.1. Un espace euclidien est un espace vectoriel réel V, de dimension finie, muni

d’un produit scalaire (= forme bilinéaire, symétrique, définie, positive).

Dans un espace euclidien V', lorsqu’il n’y a pas de confusion possible, on écrira x - y pour le

produit scalaire de x,y € V. (Dans les références on peut rencontrer d’autes notations : b(x,y),

(z[y), -.)
Définition 3.1.2. Dans un espace euclidien V' on définit :
— la norme de x : ||z|| = /z -z,

— la distance de x a y : dist(z,y) = ||z — y||,
Ty
EIrk
|||yl
— lorthogonalité de deuz vecteurs x ety : x L y si et seulement si x -y = 0.

— langle (non—om’enté entre deux vecteurs non-nuls x ety : 6 = arccos(

Rappelons que tout espace euclidien V' admet (au moins) une base orthonormale {eq, ..., ey},
c’est a dire, une base dont chaque vecteur est de norme 1 et tout vecteur est orthogonal & tout
autre vecteur. (On peut appliquer le procédé d’orthonormalisation de Gram-Schmidt & une base
quelconque de V' pour trouver une base orthonormale.) Rappelons aussi que deux sous-espaces
vectoriels E, F' C V sont dits orthogonauz si x L y pour tout x € F et y € F. Par ailleurs, tout

sous-espace vectoriel E C V a un unique orthocomplément E+- et ona E@® E- = V.

1. Rappelons qu’en effet —1 < m < 1 pour tout z,y dans V' \ {0}, donc 6 est bien défini par la fonction
arccos: [—1,1] — [0, 7]. Dans R? muni du produit scalaire usuel, il s’agit de ’angle formé par les demi-droites R

et Rty au point (0,0). Le scalaire § ne change pas lorsqu’on permute x et y, ce qui explique 1’adjectif non-orienté.

Voir aussi les exercices.
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Puisqu’un espace euclidien V' est un espace métrique pour la distance dist(z,y) = ||z — y||,

il est naturel d’étudier les applications qui préservent les distancesﬂ

Définition 3.1.3. Soient des espaces vectoriels euclidiens V et W. Une application g: V — W
est isométrique si pour tout xz,y € V on a dist(gz, gy) = dist(x, y).

Il est évident que la composée de deux applications isométriques f: V — W et g: W — Z est
une application isométrique gf: V — Z; cette composition est associative et les applications
identité id: V' — V en sont des neutres. Ainsi on obtient une catégorie Eucl ayant pour objets
les espaces vectoriels euclidiens, et pour morphismes les applications isométriques.

Mine de rien, le fait de préserver toutes les distances est une condition tres forte sur une

application :

Lemme 3.1.4. Soient des espaces vectoriels euclidiens V' et W. Toute application isométrique

g: V. — W est injective.

Démonstration. Si gz = gy alors 0 = ||gz — gy|| = || — y|| donc x = y. ]
Lemme 3.1.5. Soit V un espace euclidien. Toute translation t: V — V est isométrique.
Démonstration. Soit tx = x4 a alors on a [[tx — ty|| = ||(z + a) — (y + a)|| = ||l — || O

Lemme 3.1.6. Soient V et W des espaces vectoriels euclidiens. Toute application isométrique

f: V. — W préservant le vecteur nul (fO = 0) préserve aussi le produit scalaire (pour tout

z,yeVona fr- fy=x-y).

Démonstration. Avec les hypotheses on a ||fz|| = || fz — 0| = || fx — fO]] = || — 0|| = ||z||. Puis
on vérifie que | fz — fy||* = ||z — y||? implique —2(fz - fy) = —2(z - y), d’ot la conclusion. [

Lemme 3.1.7. Soient V et W des espaces vectoriels euclidiens. Toute application f: V — W

préservant le produit scalaire est linéaire.

Démonstration. Avec 'hypotheése on vérifie que

If(z+y) — (fz + fy)l
=(flz+y)—(fz+ fy) - (f@+y) - (fz+ fy))
=flz+y) - fle+y) +fo fe+fy fy—2f(x+y) fe-2f(z+y) fy+2fx-fy
=@+y) - (e+y)+z-r+y-y—2@+y)  xz-2@+y) y+2r-y
=0

et donc f(z +y) = fr + fy. De méme, on a ||f(ax) — a(fz)|? =0, dou f(ar) = a(f). O

Proposition 3.1.8. Soient V et W des espaces vectoriels euclidiens. Toute application isomé-

trigue g: V. — W est une application affine injective.

2. A part les applications isométriques, il y a d’autres classes d’applications “naturelles” entre espaces

métriques—voir le cours de Topologie!
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Démonstration. Notons a = g0 € W, alors l'application f =t_,g: V — W est isométrique (car
c’est la composée de deux applications isométriques) et préserve 0; c’est donc une application
linéaire (par les lemmes précédents), ce qui veut dire que g = tf est une application affine.

L’injectivité a été montré dans un lemme. (Il

Autrement dit, Eucl est une sous-catégorie de Affg dont tous les morphismes sont des monomor-
phismes. (Mais, bien siir, il existe des applications affines injectives qui ne sont pas isométriques!)

Nous savons déja que toute application affine g: V' — W s’écrit, de maniere unique, comme
la composée g = t o f d’une application linéaire f: V — W et une translation ¢t: W — W.
Clairement, si g est isométrique, alors aussi f = ¢! o g l'est; et réciproquement, si f est

isométrique, alors aussi g =t o f ’est. Ainsi on obtient :

Théoréme 3.1.9. Soient V et W des espaces vectoriels euclidiens. Une application g: V — W
est isométrique si et seulement s’il existe une unique application linéaire isométrique f: V. — W

et unique translation t: W — W telles que g =t f.

11 suit par le Théoreme du Rang que toute application (affine/linéaire) isométrique V- — V est
bijectivelﬂ: on l'appelle alors une isométrielﬂ (affine/linéaire) de V. Ainsi, pour g = tf € GA(V)
avect € T(V) et f € GL(V), le théoréme ci-dessus implique que g est une isométrie affine si et

seulement si f est une isométrie linéaire. Il suit maintenant de maniere évidente que :

Théoréme 3.1.10. Soit un espace euclidien V. L’ensemble E(V') des isométries affines de V
est un sous-groupe de GA(V'), appelé le groupe euclidien de V. L’ensemble O(V') des isométries
linéaires de V' est un sous-groupe de GL(V'), appelé le groupe orthogonal de V. On a le diagramme

commutatif d’homomorphismes entre groupes

(V) E(V) o)

H | !

T(V) —— GA(V) = GL(V)

montrant que la premiére ligne est une sous-suite exacte scindée de la deuziéme ligne. Cela
montre en particulier le produit semi-direct E(V) =T(V) x O(V).

Démonstration. 11 est toujours vrai que la composée de deux applications isométriques est une
application isométrique, que I'application identité id: V' — V est isométrique, et que 'inverse
(ensembliste) de toute application bijective isométrique est isométrique. Ainsi le résultat suit
du fait que les isométries (affines/linéaires) d’un espace euclidien V' sont bijectives, donc des

automorphismes (affines/linéaires). O

3. Dans le cours de Géométrie en L2, une “isométrie de R?” était, par définition, une bijection préservant les
distances. Ici, par les résultats de I’Algeébre Linéaire, nous voyons que la bijectivité est en fait une conséquence de
la préservation des distances.

4. Plus généralement, le terme isométrie est aussi utilisé pour désigner un isomorphisme (affine/linéaire)

isométrique, c’est & dire, pour toute bijection (affine/linéaire) isométrique.
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8.2. Le groupe orthogonal

Les isométries affines d’'un espace euclidien V' ont bien évidemment toutes les propriétés

des automorphismes affines (voir les Propositions [2.2.4} [2.2.10| et [2.2.12)), mais avec la qualité

supplémentaire qu’elles préservent les distances (et toutes les notions géométriques que 'on
peut exprimer a 'aide de la distance). La notation E (V) pour le groupe euclidien n’est pas
la seule utilisée dans les références; on y voit aussi Iso(V') ou Eucl(V'). Par contre, la notation
O(V) pour le groupe orthogonal d’un espace euclidien V' est standard (et est utilisée également
dans le cadre plus général des espaces quadratiques). Dans certaines références, les éléments de
E(V) sont appelés les transformations euclidiennes de V, et ceux de O(V') les transformations

orthogonales.

3.2. Le groupe orthogonal

Vu son importance pour les isométries affines, on souhaite mieux comprendre le groupe orthogo-
nal O(V') des isométries linéaires d'un espace euclidien V. Avec les lemmes démontrés auparavant

(et le Théoreme du Rang) on vérifie facilement :

Proposition 3.2.1. Soit un espace euclidien V et une application linéaire f: V. — V. Les

conditions suivantes sont équivalentes, et chacune d’entre elles exprime que f € O(V)H :
1. pour tout z,y € V, |[fx — fy| = |z — yll,
2. pour tout x € V, || fz| = ||z,

3. pour tout x,y €V, z-y= fx- fy.

Une isométrie linéaire préserve l'orthogonalité de vecteurs (si z -y = 0 alors fx - fy = 0) et
de sous-espaces vectoriels. (Mais attention, il ne suffit pas de préserver l'orthogonalité pour
étre une isométrie : les homothéties — et plus généralement les similitudes — fournissent des
contre-exemples. Voir les exercices.)

On sait (cf. Proposition que f € GL(V) exactement quand f: V' — V est une ap-
plication linéaire envoyant une (et alors toute) base (quelconque) sur une base; on peaufine ce

résultat pour les isométries linéaires :

Proposition 3.2.2. Soit un espace euclidien V. Une application linéaire f: V — V est une
isométrie si et seulement si f envoie une (et alors toute) base orthonormalelﬂ de V' sur une base

orthonormale de V.

Démonstration. Si f: V — V est une isométrie linéaire, alors f préserve le produit scalaire, et
donc la norme et 'orthogonalité ; ainsi il suit que f envoie toute base orthonormale {ey, ..., e, } sur
une base orthonormale {fe, ..., fe, }. Réciproquement, soit une base orthonormale {e1, ..., ey}
telle qu'aussi { fey, ..., fe,,} est une base orthonormale. Pour tout x € V on a alors = = >, ase;

et, par linéarité de f, aussi fr = >, a;fe;. Mais alors ||z]|? = 3, o? = || fz||?, montrant que f

5. Souvent on prend la troisiéme condition pour définir les éléments de O(V); pour insister sur I'importance
de la notion géométrique de distance, nous avons pris la premiére condition pour la définition.

6. Rappelons que, si {e1, ..., e, } est une base orthonormale d’un espace euclidien V, alors — par bilinéarité du
produit scalaire — on a pour tout x = ZZ ase; et tout y = Zl Bie; que x -y = Zl o Bi.
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préserve la norme; et il suit de maniere évidente que ||z —y|| = || f(x — y)|| = || fz — fy||, donc

f est une isométrie. O

Faisons ensuite le lien avec les représentations matricielles des applications linéaires. Nous savons
déja qu’en choisissant une base {ey, ..., e, } (quelconque) d’un espace vectoriel V' sur un corps K,
on établit un isomorphisme de groupes GL(V) = GL(n, K) envoyant un automorphisme linéaire
f:V — V sur sa matrice par rapport a la base chosie. Lorsque V est un espace euclidien, et on

choisit un base orthonormale, on peut faire mieux.

Lemme 3.2.3. Pour tout n € N, [’ensemble
O(n) ={M € GL(n,R) | M~' = M}
est un sous-groupe de GL(n,R) ; ses éléments s’appellent les matrices orthogonalesm.

Proposition 3.2.4. Soit un espace euclidien V. Tout choix de base orthonormale {e1, ..., en}

de V' détermine un isomorphisme de groupes O(V) = O(n). On a un diagramme commutatif

O(V)——GL(V)

|

O(n)—— GL(n,R)

d’homomorphismes de groupes, dont les fleches horizontales sont des inclusions de groupes, et

les fleches verticales sont des isomorphismes déterminés par le choix d’une base orthonormale.

Démonstration. Etant donné une base (quelconque) {ey, ..., e, } de V, un automorphisme linéaire
f € GL(V) correspond avec une matrice inversible M = (m;;);; (par rapport a cette base) si et
seulement si fe; = Y_; mj;e;. Supposons maintenant que {ej, ..., e, } est une base orthonormale

de I'espace euclidien V' ; on a alors que

mig

fej- fer = (mlj mnj)

Mnk

Ainsi f est une isométrie si et seulement si {fej,..., fe,} est une base orthonormale, si et
seulement si MM = I, si et seulement si M est une matrice orthogonale. L’isomorphisme
GL(V) = G(n,R), déterminé par la base orthonormale {ey,...,e,} de V, se restreint donc aux

~Y

sous-groupes respectifs, viz. O(V) = O(n). O

Pour tout M € O(n) on a M'M = I et donc det(M)? =1, d’ot det(M) € {—1,+1}; ainsi pour
tout f € O(V) on a aussi que det(f) € {—1,+1}. Notons que {—1,+1} C R* est un sous-groupe

7. Pour n = 0 il convient de dire que “la matrice vide” est une matrice orthogonale ; ainsi O(0) est le groupe
trivial, qui est bien isomorphe au groupe orthogonal O({0}) = {id}.
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8.2. Le groupe orthogonal

multiplicatif (et, & isomorphisme pres, le seul groupe a deux éléments). Cela fait un diagramme
commutatif

o), i1 1y

GL(V) —— R~
det

d’homomorphismes de groupes, dont les fleches verticales des injections; et si dim(V') > 1, les
fleches horizontales sont des surjectionsﬂ Tout comme le groupe linéaire spécial SL(V') est, par

définition, le noyau de la deuxieme ligne de ce diagramme, ici on a :

Théoréme 3.2.5. Soit un espace euclidien V' de dimension n > 1. Le noyau de det: O(V) —
{=1,+1} est noté SO(V'), et appellé le groupe orthogonal spécial de V. Ainsi on a un diagramme

commutatif
det

SO(V) O(V)

I

€

{+1,-1}

d’homomorphismes de groupes, dont la premicre ligne est une sous-suite exacte de la deuriéme
ligne. On a en particulier que O(V)/SO(V') = {—1,+1}.

Pour la “version matricielle” de SO(V'), on définit bien évidemment
SO(n) ={M € O(n) | det(M) =1}

et il suit que, pour tout choix de base orthonormale de V (de dimension n > 1) on a un

diagramme commutatif

SOV) —— o(v) - 1 41}

| |

SO(n) O(n) -4 (1 11

d’homomorphismes de groupes, dont les lignes horizontales sont des suites exactes courtes, et les
fleches verticales sont des isomorphismes (déterminés par le choix de base de V). Les éléments de
SO(V') sont appelés les isométries linéaires directes : ils ne changent pas 1’ orientation de ’espace
(voir les exercices). Par ailleurs, ces suites exactes courtes sont scindées ; voir les exercices pour
une démonstration et des conséquences intéressantes.

Dans la suite, nous voulons étudier des générateurs pour les groupes O(V') et SO(V), ainsi
que leurs centres. Pour cela nous adapterons d’abord la notion de symétrie linéaire (cf. les

exercices du chapitre précédent) a la situation plus spécifique ou 'espace V' est euclidien :

8. Si {e1,...,en} est une base orthonormale de V', alors aussi {—e1,ea,...,€,} est une base orthonormale; et
l'unique application linéaire envoyant I'une sur Pautre, est un élément de O(V') dont le déterminant vaut —1. Voir

aussi les symétries orthogonales, et en particulier les réflexions, plus loin.
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3. Isométries

Proposition 3.2.6. Soit E C V un sous-espace vectoriel d’un espace euclidien, et notons
E+ C V son (unique) orthocomplément : V. = E @ E* ; ainsi tout x € V admet une unique

décomposition x = xg + xpL. La symétrie linéaire
sp:V=>Viep+arpL—ap—TgL
est une isométrie (linéaire), appelée symétrie orthogonale (linéaire) d’axe E.

Démonstration. La linéarité de sg: V — V suit d’un exercice du chapitre précédent. Si on

choisit une base orthonormale de V' qui est la concaténation de bases orthonormales de E et

(")

ott k = dim(E), | = dim(E') (et donc k + [ = dim(V')), et I dénote la matrice unité r x 7. Il

s’agit d’'une matrice orthogonale, et donc sg est une isométrie linéaire. O

E+ alors la matrice de s est

Pour F = V on a sg = id (identité) et pour E = {0} on a sg = —id (symétrie centrale).

Introduisons aussi la terminologie classique suivante :

Définition 3.2.7. Une réflexion linéaire d’un espace euclidien V de dimension n > 1 est une
symétrie orthogonale linéaire sp: V — V telle que dim(E) =n — 1 (donc E est un hyperplan

vectoriel).

Clairement, si n = 1 alors 'unique réflexion est —id; voici des illustrations de réflexions lorsque

n=2etn=3:

EJ_
. sg(x) [
x
0
EJ_
E
Lemme 3.2.8. Soit un espace euclidien V' de dimensionn > 1, et x,y € V. On a ||z|| = ||y|| si

et seulement s’il existe une réflexion linéaire s: V. — V telle que sx = y.

Démonstration. S’il existe une réflexion envoyant x sur y, alors — puisque c’est une isométrie
linéaire — on a égalité des normes. Réciproquement, si z = y alors pour n’importe quel hyperplan
vectoriel H C V contenant z, la réflexion sy fixe z, et envoie donc z sur y. Si z # y alors x—y # 0
et D = R(z — y) est une droite vectorielle dans V'; son orthocomplément est un hyperplan, soit

H. Puisque
(=) (x+y) =zl —[lylI* = 0
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8.2. Le groupe orthogonal

(on utilise que z et y sont de méme norme), on voit que x +y € H = D+, d’ot I'unique
décomposition z = 3(z +y) + 3(z — y)+ € Ha D.

1l suit que sy (z) = 3(z +y) — 3(z — y) = y, comme voulu. O

Théoréme 3.2.9 (Cas particulier du Théoréme de Cartan-Dieudonné). Soit un espace
euclidien V' de dimension n > 1. Toute isométrie linéaire f € O(V) est la composée de au plus

n réflexions linéairesﬂ (lorsqu’on considére que la composée de zéro réflexions est l'identité).

Démonstration. On fait une preuve par induction sur n > 1. Pour n =1 on a O(V') = {id, —id}
et tout est presque trivial : H = {0} est un hyperplan, et sy = —id.

Supposons maintenant que n > 2. Si f # id, alors il existe g € V tel que fxg # xo.
Comme || fxol|| = ||z||, le lemme précédent implique qu’il existe une réflexion s: V' — V tel que
s(fxo) = xo. L’isométrie g := so f: V — V fixe alors le vecteur xg, et donc aussi tout élément
de la droite D = Rxy. Mais g préserve lorthogonalité (comme toute isométrie linéaire), et donc

g(H) = H pour H = D*. Ainsi, I'isométrie g: V — V est la somme des deux isométries
gp: D —-D:z—=x et gu: H— H:z+— gx.

Puisque dim(H) = n— 1, ’hypothése de I'induction s’applique : gy = sx 0...0 81 est la composée
de k < n — 1 réflexions s;: H — H. Mais chaque réflexion s; détermine un hyperplan H; C H ;
et Uhyperplan H] := D ® H; C D ® H = V détermine & son tour une réflexion s;: V — V.
Explicitement, pour z = xp + 2y € D® H on a s,(x) = zp + si(zg) € D ® H, ce qui permet
de déduire, pour tout x =xp+axyg € D® H =V, que

(s)o...o8))(x) =ap+ (sgo..0s1)(zy) = grp + gryg = g(xp + xH) = gx.
Il suit que f =sgog=sos)o0..0s] est la composée de k + 1 < n réflexions. O

Pour une réflexion s: V. — V:xyg +xp — g — xp (donc H est un hyperplan et D est son
orthocomplément), on peut toujours trouver une base orthonormale de V' par rapport a laquelle

la matrice de s est

-1

9. Le nombre minimal de réflexions nécessaires est en fait n — dim(ker(f — id)); voir les références.
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3. Isométries

Cela montre en particulier que det(s) = —1.

Corollaire 3.2.10. Soit un espace euclidien V. Alors f € SO(V) si et seulement si f est la

composée d’un nombre paire de réflexions.
Par ailleurs, les symétries orthogonales sont aussi utiles pour démontrer que :

Proposition 3.2.11. Le centre de O(V) est Z(O(V)) = {id, —id}.

Démonstration. Une inclusion est triviale. Pour l'autre, soit f € Z(O(V)), alors pour toute
symétrie orthogonale s: V' — V on doit avoir fs = sf. En particulier, pour tout 0 # € V on
peut considérer E = Rx ; alors la symétrie sg: V — V fixe exactement les éléments de la droite
E (et envoie les éléments de I'orthocomplément E+ sur leurs opposés). En copiant 1’argument
donné pour le calcul du centre de GL(V), on trouve que f = Aid pour un A € R. Mais la
contrainte supplémentaire que det(f) = 41 implique que A = £1 (dans K = R); et on trouve
que f € {id, —id}. O

Lorsque dim(V') € {0,1}, le groupe orthogonal spécial SO(V') est trivial; il est donc égal & son
centre. Pour dim(V) = 2 on voit sans grande difficulté que SO(V') est commutatif; il est donc
aussi égal a son centre. Par contre, pour dim(V') > 3 la situation est plus intéressante, et pour

calculer le centre de SO(V) il est utile d’introduire :

Définition 3.2.12. Un retournement (aussi appelé renversement ou demi-tour) d’un espace
euclidien V' de dimension n > 2 est une symétrie orthogonale sp: V — V telle que dim(F) =
n— 2.

Autrement dit, les points fixes d’un retournement forment un sous-espace de dimension n — 2
de V. Bien évidemment, cette définition n’a pas de sens pour n € {0,1}, et pour n = 2 'unique
retournement est —id. Ainsi, ¢’est pour n > 3 que cette notion s’avere utile. Voici une illustration

pour n = 3, ou un retournement est donc exactement une rotation d’angle m, ce qui explique la

terminologie :

E

s

Par ailleurs, on peut toujours trouver une base de V par rapport a laquelle la matrice d’un

retournement est
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8.2. Le groupe orthogonal

ce qui montre en particulier que tout retournement est un élément de SO(V').
Proposition 3.2.13. Soit un espace euclidien V de dimension n > 3, alors

2(SO(VY) = { {?d, —id} sz: n est ]?air ‘

{id} si n est impair
Démonstration. Les inclusions {id, —id} C Z(SO(V)) (pour n pair) et {id} C Z(SO(V)) (pour
n impair) sont évidentes. Réciproquement, tout f € Z(SO(V')) doit commuter avec tous les
retournements. Notamment, pour tout plan P C V, si on note son orthocomplément E = P+,
on doit avoir fsp = sgf, et donc pour tout x € P on a sg(fz) = fsg(z) = f(—z) = —fz;
mais donc fz € P. Ainsi on voit que f(P) = P pour tout plan P C V; et toute droite étant
I'intersection de deux plans, et f préservant toutes les intersections, il suit que f(D) = D pour
toute droite D C V. Comme dans le calcul du centre de GL(V') et de O(V), on trouve déja
que f = +id. Mais ici on doit avoir 1 = det(f) = (£1)", donc selon la parité de n on trouve

I’inclusion annoncée. (I

Incidemment, les retournements engendrent tout SO(V) :

Proposition 3.2.14. Soit un espace euclidien V de dimension n > 3. Toute composée de
deuzx réflexions est la composée de deux retournements. Par conséquent, tout f € SO(V) est la

composée de au plus n retournements.

Démonstration. Si on compose une réflexion s: V. — V avec elle-méme, alors s o s = id est
évidemment la composée d’un retournement (au choix) avec lui-méme; le résultat est donc
trivial. Prenons donc deux réflexions distinctes, déterminées par deux décompositions distinctes
H@® D=V =H & D' (en “hyperplan plus droite”), soient

s:V>V.izxg+zp—zxzyg—xp et SV s Vieg +xp — xyg —pr.

Puisque dim(V) = n > 3, lintersection H N H' (de dimension n — 2) contient une droite,
disons D", dont I’orthocomplément est un hyperplan H” = (D")*, qui détermine & son tour une

réflexion s”: V — V. On a trivialement
S/OSZS/O(S”OS//)OSZ (S/OS//)O(S//OS)’

et on va montrer que r := s” os et ' 1= s’ o s" sont des retournements. En effet, puisque
D" C Hn H' C H, on peut considérer 1'orthocomplément de D” dans H, soit H;, puis en
déduire la décomposition orthogonale V.= H & D = Hy & D" & D. Ecrivant maintenant z =
zH, + xpr +xp € Hy @ D" @ D on peut calculer que

TT = (SII(S(le +xzpr+2xp)) = 8”(%[{1 +xpr —xp) =X, —Tpr —Tp

ce qui montre que r laisse fixe I’espace Hi de dimension n — 2 et envoie tout élément du plan

D @ D" sur son opposé : ¢’est donc un retournement. Méme type de calcul pour 7’ = s’ o s”.

On termine cette section avec une expression explicite pour tous les éléments de O(V').
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Théoréme 3.2.15. Soit un espace euclidien V. Pour tout f € O(V) il existe une base ortho-

normale de V' telle que la matrice de f est l’assemblage diagonale de matrices carrées

Iy,
_Il
Ry,

Ry,

ou Iy, et I} sont des matrices unités (de genre k x k et 1 x 1), et chaque Ry, est la matrice 2 x 2

d’une rotation plane d’angle 0;, soitlE

Ry, — <cos 0; —sin 9¢> '

sinf; cosb;
(On a k,l,t >0 et k+1+2t=dim(V).)

On ne fera pas la démonstration de ce théoréme en dimension quelconque, mais seulement en
dimension 3 (ou la démonstration est plus simple, mais présente tout de méme ’essentiel du cas

général). Les dimensions n € {0, 1,2} sont laissées en exercice.

Théoréme 3.2.16. Soit un espace euclidien V de dimension 3. Pour tout f € O(V) il existe

une base orthonormale de V telle que la matrice de f est

1 0 0 -1 0 0
0 cosf —sind ou 0 cosf® —sinb
0 sinf cos@ 0 sin@ cosf

Dans le premier cas on dit que f est une rotation, et dans le deuzxiéme cas f est une rotaflexion,
c’est a dire, la composée (dans n’importe quel ordre) d’une rotation et d’une réflexion, l'aze de

la rotation étant orthogonal d l'axe de la réflexion :

Démonstration. S’il existe 0 # z € V et A € R tels que fxr = Az, alors on voit facilement que

lz|| = [|fz|| = || Az|| = |A|||z]|, et donc A = £1; autrement dit, les seuls valeurs propres réelles

10. Ce sont exactement les éléments de SO(2) ; voir les exercices.
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possibles pour f € O(V) sont £1. En géneral il est possible que f n’ait aucune valeur propre
réelle, mais pour dim(V') = 3 le polynéme caractéristique de f est de degré 3 et a coefficients réels,
donc admet au moins une racine réelleE Ainsi il y a toujours une droite D C V' engendré par
un vecteur propre — que ce soit pour la valeur propre A = 1 ou A = —1 — telle que f(D) = D;
et puisque f préserve l'orthogonalité, on a aussi f(H) = H pour H = D*. Ainsi I'isométrie

f:V =V est la somme des deux isométries
fp:D—=D:xw— \x et fo:H—>H:x— fz,

ou dim(D) =1 et dim(H) = 2. Pour toute base orthonormale de la droite D, la matrice de fp
est (\) € R'!, Puisque H est un plan, fy est soit une réflexion, soit une rotation (= composée

de deux réflexions), et on peut donc trouver une base orthonormale de H pour laquelle la matrice

de fg est
. 1 0 . cos —sinb
soit , soit .
0 -1 sinf cosf

Par concaténation de ces bases orthonormales de D et de H, on obtient une base orthonormale

de V=D @ H ; et la matrice de f = fp @ fy par rapport a cette base est

+£1 0 O +1 0 0
0O 1 0 ou 0 cosf —sind
0 0 -1 0 sinf cos@

Mais la premiere matrice est en fait un cas particulier de la deuxiéme (& permutation des vecteurs

de base pres) pour § = 0 et § = 7 ; donc le résultat suit. O

Ce théoreéme permet de classifier les éléments de O(3) (et donc les isométries linéaires en dimen-

sion 3) a l’aide du déterminant, la trace et les espaces propres.

3.3. Classification des isométries affines

Pour un espace euclidien V' donné, le groupe euclidien E (V') contient exactement les automor-
phismes affines ¢ = t o f avec f € O(V). Le groupe O(V) étant engendré par les réflexions
linéaires, il est naturel de voir comment on peut engendrer le groupe E(V'). D’abord on définit
“par conjugaison” la notion naturelle de réflexion affine (voir aussi les exercices du chapitre

précédent) :

Définition 3.3.1. Soit V un espace euclidien de dimension n > 1. Une réflexion affine de V

est une isométrie affine g =t, 0 fot_, ou f est une réflexion linéaire et a € V.

Ainsi, si Hy est I'axe de la réflexion linéaire f, alors 'hyperplan affine H = Hy + a est 'axe de

g =tgo0 fot_,. Réciproquement, tout hyperplan affine H C V est I'axe d’une unique réflexion

11. Le graphe d’une fonction polynomiale de degré 3 & toujours pour limites (lorsque * — +00) les valeurs +oo

et —o0, et “coupe” donc 'axe X a au moins un endroit : c’est une racine réelle du polynéme en question.
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affine g = t,0 fot_, ou f est la réflexion linéaire d’axe Hy = H —a et a est un point (quelconque)

de H. Voici une illustration pour n = 3 :

Géométriquement parlant, la réflexion affine d’axe H envoie tout point = sur un point 2’ de telle
maniere que la droite xa’ soit orthogonale a H et que H contienne le milieu de z et 2’ (voir

aussi les exercices du chapitre précédent) :

(Par ce méme procédé de conjugaison, on peut donner une définition naturelle de “symétrie
orthogonale affine”; dont la réflexion affine est alors un cas particulier.)
Voici maintenant ’analogue “affine” du Théoréme de Cartan-Dieudonné (Théoreme [3.2.9) :

Théoréme 3.3.2 (Décomposition d’une isométrie en réflexions affines). Soit V' un
espace euclidien de dimension n > 1. Tout isométrie affine g € E(V) est la composée de au plus
n + 2 réflexions a]ﬁnesm.

Il est utile de montrer d’abord un lemme.

Lemme 3.3.3. Soit V' un espace euclidien de dimension n > 1. Toute translation t € T(V) est

la composée de deux réflexions affines.

Démonstration. Sit =id alors t = s o s pour n’importe quelle réflexion s. Si t = t, avec a # 0,
alors I'hyperplan (vectoriel[®) H = (Ra)* détermine la réflexion (linéaire) sy avec laquelle on

peut maintant calculer que

ta:t%+ oid:t%ot%osHosH:t%osHot,%osH,

[SIIS]

ce qui montre que ¢, est la composée des réflexions sy (lindaire) et (t2 o sy ot_g) (affine). [

12. On peut préciser le nombre de réflexions affines nécessaires ; voir les références.

13. On peut en fait prendre n’importe quel hyperplan affine orthogonal a la droite vectorielle Ra.
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Démonstration du Théoréme. Supposons d’abord que g € E(V) a un point fixe, soit ga = a.
Alors f =t_, 0 got, est une isométrie fixant 0, c’est a dire f € O(V). 1l suit par le Théoréeme
que f = spo...os1 pour k < n réflexions linéaires, et donc

g=teofot_g=tgo(sgo..081)ot_q=(tgospot_g)o..0(tgos10t_4g).

Chacun des (t, 0 s; 0t_g) est (par définition) une réflexion affine.

Supposons maintenant que g € E(V') est sans points fixes. Pour un point a € V au choix,
g =te—gaog € E(V) fixe a, et ’écrit (par Pargument précédent) comme une composée de k < n
réflexions affines. Par le lemme, toute translation s’écrit comme une composée de deux réflexions

affines. Ainsi g = tgq—q © ¢’ s’écrit comme la composée de k + 2 < n + 2 réflexions affines. U

Les résultats ci-dessus s’appliquent aux espaces euclidiens de dimension quelconque; mais
pour la suite de cette section, on se limiteralﬂ aux espaces euclidiens de dimension 3. Par le
Théoreme les éléments de O(V') sont alors exactement les rotations et les rotaflexions
(linéaires) ; et une rotaflexion est exactement la composée (dans n’importe quel ordre) d’une
rotation avec une réflexion d’axes perpendiculaires. Pour décrire les éléments de E(V'), on définit

d’abord “par conjugaison” les rotations affines :

Définition 3.3.4. Soit V un espace euclidien de dimension 3. Une rotation affine est une

isométrie de la forme g =t 0 fot_, ot f est une rotation linéaire.

Si f: V — V est la rotation linéaire d’axe Dy et d’angle 6, alors la rotation affine g =t,0 fot_,
est d’axe D = Dg+a et d’angle 6. Réciproquement, toute droite affine D et angle 8 déterminent
une (uniqueE[) rotation affine g = t, 0 fot_, ou f est la rotation linéaire d’axe Dy = D — a et

a est un point (quelconque) de D. Voici une illustration :

Ainsi, parmi les éléments de E(V) il y a les translations, les réflexions affines et les rotations
affines. Le résultat suivant dit que toute isométrie affine g € E(V) peut étre décrite en termes
de composées “bien choisies” de translations, réflexions et rotations, et donne alors une inter-

prétation géométrique des éléments de E(V).

14. Pour dim (V') € {0,1} tout est trivial, et pour dim(V') = 2 on peut consulter le cours de Géométrie de L2.
Voir aussi les exercices.

15. Si on travaille dans un espace orienté, voir les exercices.
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Théoréme 3.3.5 (Classification des isométries en dimension 3). Toute isométrie affine

g=to fe E(V) dun espace euclidien V de dimension 3 est l’'un des quatre cas suivants :
1. Si f est lidentité, alors g est une translation.

2. Si f est une réflexion, alors g est une réflexion glisée : une composée (dans n’importe quel
ordre) d’une réflexion affine avec une translation par un vecteur dans la direction de l’aze

de la réflexion.

— Y
9(x)
3. Si f est une rotation d’angle 0 # 0, alors g est un vissage : la composée (dans n’importe

quel ordre) d’une rotation affine avec une translation par un vecteur dans la direction de

l’aze de la rotation.

4. Si f est une rotaflexion d’angle 0 # 0, alors g est une rotaflexion affine : la composée (dans
n’importe quel ordre) d’une rotation affine avec une refléxion affine par un plan orthogonal

a Uaxe de la rotation.

Démonstration. Pour fixer les notations, posons g =t, 0 f aveca € V et f € O(V). Ainsi f est
soit l'identité (rotation d’angle # = 0), soit une réflexion (rotaflexion d’angle # = 0), soit une
rotation d’angle 6 # 0, soit une rotaflexion d’angle 6 # 0.

(1) Si f est I'identité, alors tout est trivial.

(2) Si f est une réflexion d’axe Hy, alors la restriction de f & Hy est idy, et sa restriction a

Dy = Hd- est —idp,. Notons a = ap, + ag, pour I'unique décomposition de a € V = Dy & Hy.
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3.8. Classification des isométries affines

On peut alors calculer que
g=tao f=tay, otap, ©f =tay, o (tapy o fot_ap,)
2 2
mais aussi (puisque f fixe les éléments de Hy)

g:taof:taDOotaHOof:taDoofotaHo :(taﬂ Ofot_ﬂ)ota;[o-
2 2

Ainsi g est la composée, dans n’importe quel ordre, de la réflexion affine d’axe H = Hy + a%
avec la translation par ap,, un vecteur de la direction de I’axe de la réflexion.

(3 et 4) Si f est soit une rotation, soit une rotaflexion (composée de rotation et réflexion),
notons Dy I'axe et 6 # 0 'angle de la rotation (et donc Hy = Dy est 'axe de la réflexion, le
cas échéant). Notons toujours a = ap, + ap, pour I'unique décomposition de a € V' = Dy & Hj.
Que f soit une rotation ou une rotaflexion, sa restriction a Hy est une rotation d’angle 6 (en
dimension 2). Pour a = ap, + ag, il est alors toujours possible de trouverlE un (unique) b € Hy

tel que ag, = b — f(b), comme indiqué dans ce dessin dans le plan Hy :

11 suit que
g=taof=tap, Otay, o f =tap, o (tpo fot_yp).
On considere maintenant deux cas :
(3) Si f est une rotation, alors t, o f ot_j est la rotation affine d’axe D = Dy + b et d’angle
6. Par ailleurs, puisque la restriction de f & Dy est idp, (f fixe les éléments de Dy), et puisque

ap, € Do on peut calculer (par commutativité des translations) que
g=tap, o (tyo fotp)=tpo(tap, o f)otpy="tyo(folap)otp=(thofotp)otay,.

Ainsi g est la composée, dans n’importe quel ordre, de la rotation affine d’axe D = Dy + b
et d’angle 6, avec la translation par le vecteur ap, (un élément de la direction de 'axe de la
rotation).

(4) Si f est une rotaflexion, alors la restriction de f a Dy est —idp, (f envoie les éléments de
Dy a leurs opposés), et puisque ap, € Dy on peut calculer (par commutativité des translations)

que

9 =tap, © (tyo foty)=tyota, ofotp=tyo(tapy o fot apy)otp=teofot
2 2

16. Plus algébriquement : ker(idg, — fr,) = {0} car fm, n’a pas de points fixes, donc im(idg, — fu,) = Ho;

c’est a dire, tout élément de Hy est dans 'image de idg, — fr,-
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pour ¢ = b+ a%. De plus, lorsqu’on écrit f = fo o fi = f1 o fo pour la décomposition de la
rotaflexion f en réflexion f; (d’axe Hp) et rotation fo (d’axe Dy = Hy et angle ), il suit aussi
que

g=tecofot = (tconOt—c)o(tcofl Ot—c) = (tcoflot—c)o(tconOt—c)-

Ainsi g est la composée, dans n’importe quel ordre, d’une rotation affine d’axe D = Dy + ¢ et
d’angle 6, et d’une réflexion affine d’axe H = Hy + c. O

Remarquons que, dans cette démonstration, les “éléments géométriques” (vecteur de translation,
plan de réflexion, axe et angle de rotation) d’une isométrie affine quelconque g € E(V') sont
explicitement calculés. Par ailleurs, on peut (presque) reconnaitre une isométrie affine par ses

points fixes :

Corollaire 3.3.6 (Points fixes des isométries affines). Soit une isométrie affine g =to f
d’un espace euclidien V' de dimension 3. Selon les points fizes de g et le détermininant de f, on

a la classification suivante :

points fizes det(f) =1 det(f) =—1
aucun translation, vissage reflexion glissée
stngleton n’existe pas rotaflexion
droite rotation n’existe pas
plan n’existe pas réflexion
espace identité n’existe pas

(Dans ce tableau, par “vissage” on entend un vissage qui n’est ni une translation ni une rotation,

par “translation” on entend une translation qui n’est pas l’identité, etc.)

Notons qu’une translation peut étre considérée comme un vissage d’angle 8 = 0, et qu'une
rotaflexion d’angle # = 0 est tout simplement une réflexion. Une rotation d’angle § = 7 est
exactement un retournement, alors qu’une rotaflexion d’angle § = 7 est une symétrie centrale.

Sans surprise, pour un espace euclidien V', on définit le groupe euclidien spécial SE(V)
comme le produit semidirect SE(V) = T'(V) x SO(V). De maniéere équivalente, SE(V) est le
sous-groupe de E (V') des isométries (affines) dont la partie linéaire est dans SO(V') (c’est a dire,
de déterminant 1). Ou encore, SE (V) est le sous-groupe des isométries dans SA(V). Les éléments
de SE(V) ne changent pas l'orientation de l’espace (voir les exercices pour plus de détails), et
sont appelés les mouvements m’gz’desm En effet, en mécanique classique, ces mouvements rigides
sont considérés comme les seuls déplacements possibles d’un solide dans ’espace, sans déformer

ce solide. Nous pouvons situer ce groupe parmis tous les autres groupes rencontrés dans ce cours

17. Aussi utilisé : déplacement, mouvement euclidien, isométrie positive (ou directe), etc. Attention : la termino-

logie peut étre différente dans certaines références.
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3.4. De nouveau quelques résultats géométriques

a l'aide du diagramme

ETV)
|

(V) GA(V) GL(V)

dans lequel les lignes horizontales sont des suites exactes courtes scindées (et donc le groupe “au
milieu” est le produit semi-direct du groupe “a sa gauche” avec le groupe “a sa droite”), et les
homomorphismes non-horizontales sont des inclusions. Voici un résultat qui suit directement du

Théoreme B.3.2 et le Corollaire B.2.101 :

Corollaire 3.3.7 (Décomposition d’un mouvement rigide en réflexions affines). Tout
mouvement rigide d’un espace euclidien de dimension n > 1 est la composée d’un nombre paire

de réflexions orthogonales affines.

Ensuite, la classification des isométries affines du Théoreme implique ce résultat — di a
lastronome et mathématicien italien Giulio Mozzi (1730-1813) et redémontré par le géometre

frangais Michel Chasles (1793-1880) — de tres grande importance en mécanique et cinématique :

Corollaire 3.3.8 (Théoréme de Mozzi-Chasles). Tout mouvement rigide d’un espace eu-

clidien de dimension 3 est un vissage (éventuellement d’angle 0, c’est a dire, une translation).

Et voici, pour terminer en beauté cette section, une conséquence simple mais surprenante, dé-
montrée par le swiss Leonhard Euler (1707-1783), de la classification des isométries par leurs

points fixes :

Corollaire 3.3.9 (Théoréme de la Rotation d’Euler). Lorsqu’on tourne une sphére (dans
un espace euclidien de dimension 3) autour de son centre[ﬂ il y a toujours un diamétre qui est

fizé (et, dans les faits, on a effectué une rotation autour de ce diameétre).

Démonstration. En “tournant la sphére autour de son centre”, on effectue un mouvement rigide
ayant (au moins) un point fixe (a savoir le centre de la sphere). Selon le Corollaire cela ne
peut étre qu'une rotation affine. L’axe de cette rotation est la droite affine des points fixes, et

passe donc par le centre : ainsi il y a un diametre de la sphere qui est fixé. O

3.4. De nouveau quelques résultats géométriques

Le produit scalaire d’un espace euclidien V' permet d’y mesurer la distance entre toute paire de

points. Par contre, la notion d’angle ne s’applique a priori qu’aux vecteurs. Remédions a cela :

18. Dans la pratique : prenez un ballon de foot entre les mains, et tournez-le comme bon vous semble!
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3. Isométries

Définition 3.4.1. Soient trois points a, b et c. L’angle Labc est l'angle entre les vecteurs a — b
et c—b.

c—b

[
a—2b
0
Soulignons qu’il s’agit ici de 1’angle non-orienté, qui est un nombre 6 € [0, 7] ; cela implique que
I'unique angle droit est . Le résultat le plus emblématique de la géométrie euclidienne est sans

doute :
Proposition 3.4.2 (Théoréme de Pythagoras@. Un (vrai) triangle abe est rectangle en b
si et seulement si dist(a, b)? + dist(b, ¢)? = dist(a, c)?.

Cc

Démonstration. Le résultat suit de

le—al* = (c—a)-(c—a)
= ((e=b)+(b—=0a)-((c=b)+(b-a))
= lle=bl*+2(c=b) (b—a)+ [Ib - al?

et du fait que (¢ —b) - (b — a) = 0 si et seulement si (¢ —b) - (a — b) = 0. O

Par ailleurs, on retrouve la “définition géométrique” du cosinus d’un angle (voir le cours de
Géométrie en L2) comme suit :
dist(a, b)

Proposition 3.4.3. Dans un triangle abc, rectangle en b, on a cos £cab = ——————.
dist(a, ¢)

Démonstration. On utilise (¢ — b) - (a — b) = 0 pour vérifier que

cos Lcab = (c—a)-(b-a) _ ((c=b)+(b—a)) (b—a) _ (b—a)-(b—a) _ ||b—a||,
e —allllb—all lc —allllb — al| lc—alllb—a] _ |lc—a|

O

19. TTudaydpac (en grec) vivait de —570 & —495 et a fait ses travaux principalement & Crotone, aujourd’hui

dans la région de Calabre, en Italie.
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Quant a la “compatibilité” de ces notions géométriques (incidence, parallélisme, distance,
angle) avec les isométries affines, nous savons déja que tout g € E(V) préserve (et reflete)
I'incidence et le parallélisme entre sous-espaces affines (comme tout automorphisme affine), et
les distances entre les points (par définition méme d’isométrie). Concernant les angles (et donc

I'orthogonalité), on peut ajouter que :

Proposition 3.4.4. Toute isométrie affine g € E(V) préserve (et refiéte) les angles : si a' = ga,
b = gb et ¢ = gc alors Labc = £a'b/c.

Démonstration. Toute isométrie linéaire f: V — V préserve le produit scalaire; si on note
a = fa, V' = foet d = fc, alors

(a=0b)-(c=b)=fla=b) fle=b) = (fa—fb)  (fe—fb) = (' =¥) (a' = V)

implique que £Labc = £a’t’/d. Toute translation t: V' — V: z + x + v est une isométrie affine;

si on note a’ = ta, b’ = tb et ¢ = tc, alors
(a=b)-(c=b)=(a+v—v—=>b)-(c+tv—v—>)= (ta—tb) - (tc—tb) = (a' = V) - (c =V

implique que £Labc = £a’b'c’. Puisque g € E(V) s’écrit comme g =t f avect € T(V) et f € O(V),

le résultat suit par composition. O

On peut maintenant élégamment exprimer qu’une isométrie affine est un “changement de repere

affine orthonormal” :

Définition 3.4.5. Dans un espace euclidien V', un repére affine {ag,a1,...,ar} est appelé or-
thonormal si dist(ag,a;) =1 (pour tout i # 0) et La;apa; = g (pour tout 0 # i # j #0).

a;

agp a;
Avec le produit scalaire sur V', cela s’écrit comme

1si0#£i=j

0%—@%0%‘“0:{0$0#i#j#0

c’est & dire, {a; — ag, ...,ax — ap} est une suite orthonormale dans V.

Proposition 3.4.6. Une application affine g: V. — V est une isométrie affine si et seulement
si g envoie un (et alors tout) repére affine orthonormal de V' sur un repére affine orthonormal
de V.

Démonstration. Si g est une isométrie affine et {ag, ay, ..., a,} est un repére affine orthonormal
de V, alors {gao, gai, ..., gayn} est un repére affine orthonormal de V', par les Propositions [2.2.10

et Réciproquement, si g est une application affine envoyant un repére affine orthonormal
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3. Isométries

{ag, a1, ...,a,} sur un repére affine orthonormale {gag, gai, ..., ga, }, alors en écrivant g = tf avec

translation t: V' — V et application linéaire f: V — V| le calcul

ga; — gaog = tfa; —tfag = fa; — fao = f(a; — ao),

montre que f envoie la base orthonormale {a; — ag, ..., a, —ap} de V sur la base orthonormale

{gai1 —gaop, ..., gan, —gao} = {f(a1 —ao), ..., f(an —ap)} de V : par la Proposition on obtient
f € O(V), comme voulu. O

Les quelques résultats ci-dessus indiquent bien comment tous les résultats que nous avons dé-
montrés dans le cours de Géométrie en L2, pour le plan cartésien R?, sont en fait des résultats
de la géométrie affine euclidienne. Notamment, la notion de “changement de repére cartésien”,
utilisée maintes fois dans le cours de L2, est identique a la notion d’“isométrie affine” develop-
pée ici. Ainsi on peut parfaitement importer les résultats concernant les triangles congruents,
les cercles circonscrits et inscrits, etc. aux espaces euclidiens. Cependant, le cadre ici est tout
de méme plus général, ne fut-ce que par 'admission de dimension quelconque pour ’espace
euclidien considéré—et dans la suite cela a des jolies conséquences.

Dans le cours de Géométrie en L2, nous avons montré en détail que toute équation polyno-
miale

azx® +bry + ey’ +dr +ey+ f=0

(en deux variables, a coefficients réels, de degré 2) se réduit “par changement de repere (affine

orthonormal)”, & une des équations réduites suivantes :

— ax® +by? =1,
—azx?® +by? =0,
-y =az?,

olt a,b € R et a # 0. Ecrivant ci-dessous a,b € Ry, alors selon les valeurs de ces parameétres, le

locus d’une telle équation est I'une des figures suivantes dans le plan euclidien R? :

— ellipse : az? + by? =1,

Y
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— hyperbole : az? — by? =1,

— parabole : y = ax?,

=

— cas dégénérés : le vide, un point, une droite, deux droites sécantes, deux droites paralleles.

Et bien siir nous avons découvert certaines propriétés “géométriques” de ces figures—notamment
le fait qu’il s’agit de sections de coniques.

Plus généralement, on peut considérer une équation polynomiale, toujours a coefficients réels

et de degré 2, mais maintenant en n variables x1, ..., T, :
n n
Z Qi LT + Z bix; +c =0, (31)
i,j=1 i=1

avec au moins un a;; # 0. On peut écrire cette équation sous forme matricielle comme

aix - Aln a1 x1
(21 - @) | (e k)| [ e=0,

anl - Apn Tn In

c’est a dire,
XAX+B'X+C=0

ou X est la matrice colonne contenant les variables, et A £ O. Quitte a remplacer la matrice
A par %(A + A?), on peut supposer que A est symétrique (A = A?). Ainsi, par le Théoréme
Spectral, il existe une matrice orthogonale M € O(n) et une matrice diagonale non-nulle D

(unique & permutation de ses éléments pres) telle que A = M'DM. On a alors
X'AX +BX+C=0 <+ X' M'DM)X+B'(M'M)X+C=0
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3. Isométries

— (MX)'DMX)+ (MB)(MX)+C =0.

Autrement dit, par l’isométrie linéaire X — M X, I’équation donnée s’écrit (lorsqu’on renomme

adéquatement les variables et les coefficients) comme

Z(aix? +bizi)+c=0
i=1

avec (ai,...,an) # (0,...,0). Maintenant, pour chaque a; # 0 on peut réécrire

b; b;
)2 - ai( )27

az'x? +bix; = ai<1'z' + g g
1 (]

c’est a dire, par la translation

b, .
T; + o2 sia; #0
XTi— ‘ 2ai . ’ ?é
x; sinon
on peut simplifier I’équation pour que chaque variable n’apparaisse qu’'une seule fois : soit dans
un terme de degré 2, soit dans un terme de degré 1. Puis, par une permutation des variables
s’il le faut, et en renommant adéquatement les coefficients, on peut réécrire ’équation donnée
comme
k n
Z aix% + Z bix;i +c¢=0, (3.2)
i=1 i=k+1
avec 1 <k <neta #0.
Si tous les b;’s sont nuls, alors — selon le cas ot ¢ = 0 ou ¢ # 0 — cette équation se décline en

deux formes :

n

“quadrique de type 17 : Zaimf =1, (3.3)
=1
n

“quadrique de type 2" : Z a;z? = 0. (3.4)
i=1

S’il existe un b; # 0, alors I’équation (3.2)) contient le terme linéaire b;x; +c = b;(x;+ ), donc
par la translation x; — x; + - (et x; = x; pour j # i) on peut faire disparaitre le coefficient

constant c. L’équation prend alors la forme

k n
=1

1=k+1

(en ayant renommé adéquatement les coefficients, comme d’habitute), toujours avec b; # 0. Mais

puisque k := ||(0,...,0, =bg11, ..., —by)|| # 0, le vecteur (0, ..., 0, Okt v %") est de norme 1. On

K )

peut donc trouver des vecteurs egy1, ..., ,—1 pour faire une base orthonormale

€1 = (170707"'70)7
€y — (0,1,0,...,0),

€k+1,



3.4. De nouveau quelques résultats géométriques

Par lVisométrie linéaire X — M X, ou M est la matrice contenant les coordonnées des vecteurs
(e;); comme colonnes, on transforme I’équation (3.5)) ayant n—k termes linéaires en une équation
n’ayant qu'un seul terme linéaire, que I’on peut alors réécrire (en reparamétrant, une fois de plus,

les coefficients) comme :
n—1
“quadrique de type 3" : Z a;x? = T, (3.6)
i=1

Bref, nous avons montré :

Théoréme 3.4.7. A isométrie affine prés, toute équation quadratique (a coefficients réels) s’écrit

comme une des trois formes réduites suivantes :

— type 1 : 123 + ... + apzl =1,

— type 2 : alx% + .+ anx% =0,

— type 3 : alx% + ...+ Gn—ll“%,l =T,
avec a1 # 0.
En fonction des valeurs (positives, négatives ou nulles) des coefficients, on peut étudier le locus
d’une telle équation. Soulignons que, pour passer de I’équation (3.1]) & I'une des trois équations
réduites (3.3)—(3.4)—(3.6), nous avons effectué uniquement des changements de variables iso-
métriques. Géométriquement parlant, cela veut dire que le locus de ’équation (3.1)) donnée est
isométrique au locus de I'équation réduite correspondant. (On peut méme faire en sorte que
I’isométrie soit directe, c’est a dire, ne change pas l'orientation de I’espace lors des changements
de variables.)

Détaillons le cas n = 3; on parle alors d’équations quadratiques en trois variables x,y, z, et

le locus d’une telle équation s’appelle une quadrique. L’équation de départ est donc
ar? + by? + c2? +dey +exz + fyz +gr+hy+iz+j=0,

mais par une isométrie affine on peut la réécrire comme une des trois formes suivantes :
— type 1 : ax® + by? + c2? =1,
— type 2 : ax? + by? + c2? = 0,
— type 3 : ax?® + by? = z,

avec a # 0. En écrivant ci-dessous a, b, ¢ € Rar, alors selon les valeurs de ces parametres le locus

d’une telle équation est I'une des figures suivantes dans l’espace R? :

1. ellipsoide : ax? + by? + cz?> =1,

n\\\\\%\\
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2. hyperboloide & une nappe : az? + by? — cz? =1

/
[ 1] ] ]

[]]
[ ] ]
R

5. cylindre hyperbolique : az? — by? =1

AN W VN W |

==V
\ \ \ \

| VN W W

6. cone elliptique : az? + by? — cz2 =0
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3.5. Ezxercices

7. paraboloide elliptique : az? + by? = z,

2:

9. cylindre parabolique : ax z

10. cas dégénérés : le vide, un point, une droite, un plan, deux plans sécants, deux plans

paralleles.

L’intersection d’une quadrique avec un plan est toujours une section de conique; les noms des
quadriques refletent les sections de conique ainsi obtenues.

De nombreuses propriétés géométriques — parfois bien remarquables! — des quadriques dans
R3 sont connues. Notamment, on peut décrire leurs symétries, i.e. les symétries orthogonales
envoyant une quadrique sur elle—mémelﬂ; on peut montrer que certaines quadriques sont des
surfaces de révolution, i.e. la surface est obtenue par rotation d’une section conique plane; les
cones, les cylindres, les hyperboloides a une nappe et les paraboloides hyperboliques sont des
surfaces (doublement) réglées, i.e. des réunions de (deux familles de) droites; et les cones et les
cylindres sont méme des surfaces développables, i.e. on peut les former “en roulant un plan”!
Voir les références pour les détails, pour des beaux dessins, et pour des applications réelles (p.e.

en architecture, en mécanique, en astronomie, ...).

3.5. Exercices

Exercice 3.5.1 (Inégalité de Cauchy-Schwarz). Soit V un espace euclidien. Montrer que

(z-y)? < ||z||||y|| pour tout x,y dans V, et conclure que I’angle non-orienté entre deux vecteurs

20. En fait, une quadrique est de type 1 si et seulement si elle a une symétrie centrale dont le centre n’appartient
pas a la quadrique ; de type 2 si et seulement si elle a une symétrie centrale dont le centre appartient a la quadrique ;

et de type 3 si et seulement si elle n’a pas de symétrie centrale.
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non-nuls est bien défini; notons-le par 60,. Montrer que, pour tout 2’ = oz et vy = [y avec
a, b e Rar, on a 0y = 6/, ; ainsi ce scalaire est en fait associé¢ aux demi-droites engendrés par
et y (plutét qu’aux vecteurs eux-mémes). Montrer que Rz = Ry si et seulement si 6, € {0, 7}.
Dans R? muni du produit usuel, calculer les angles non-orientés de = = (1,0) avec y; = (1, 1),

yo = (—1,1),y3 = (—1,—1) et y4 = (1, —1) ; cela montre bien que ’angle est en effet non-orienté!

Exercice 3.5.2 (Inégalité de Minkowski). Soit V' un espace euclidien. Montrer que ||z+y| <
|z|| + |ly|| pour tout =,y € V, et en déduire que la fonction d: V x V — R: (z,y) — ||z — y|| est

une distance au sens de la Topologie. Quand a-t-on ||z + y|| = ||z|| + ||y|| ?

Exercice 3.5.3 (Une distance non-euclidienne). Pour z = (z1,...,2,) € R" on note
||| co := max; |x;|. Montrer qu’il s’agit d’une norme qui n’est pas induite par un produit scalaire

sur R™. Ainsi la fonction doo(z,y) = ||z — y||co est une distance non-euclidienne sur R".

Exercice 3.5.4 (Procédé de Gram-Schmidt). Rappeler que tout espace euclidien V' admet
(au moins) une base orthonormale {ej,...,e,}, c’est a dire, une base dont chaque vecteur est
de norme 1 et tout vecteur est orthogonal & tout autre vecteur. (On peut appliquer le procédé

d’orthonormalisation de Gram-Schmidt.)

Exercice 3.5.5 (Tout espace euclidien est isomorphe a R™). Soit un espace euclidien V'

muni d’une base orthonormale eq, ..., e,. Montrer que ’application
V=R zw— (z1,...,2y) ol T =1x16] + ... + Tnen

est un isomorphisme faisant correspondre le produit scalaire de V' avec le produit scalaire usuel
de R™ (et observer par ailleurs que x; = x - €;, et que donc & = Y ,(z - e;)e;). Ainsi, tous les
résultats démontrés dans R™ avec le produit scalaire usuel et les notions dérivées (distance, angle,

isométrie, etc.) sont vrais pour tout espace euclidien de dimension n.

Exercice 3.5.6 (Isométries de R?). Rappeler les notions d’isométrie de R? et de groupe
des isométries de R? vues dans le cours de Géométrie en L2, et observer qu’il s’agit de cas
particuliers des notions vues dans ce cours-ci (pour l'espace V = R? muni du produit scalaire
usuel). Rappeler aussi le lien entre isométries de R? et triangles congruents, la décomposition
de toute isométrie de R? en réflexions, I'expression analytique pour une isométrie de R?, et la

classification des isométries de R2.

Exercice 3.5.7 (Un drdle de cercle). Dans R?, déterminer un produit scalaire pour lequel
(1,1), (0, %) est une base orthonormale. Dans l'espace euclidien ainsi construit, donner I'équation

cartésienne du cercle centré a ’origine et de rayon 1.

Exercice 3.5.8 (Rapport comme quotient de distances signées). Pour trois points dis-

tincts mais alignés x, a et b dans un espace euclidien V', montrer que

b— b—
i cos(éaxb)M.
a—z |la — z|]

Reprendre le Théoreme de Thales (avec les rapports) pour retrouver la version vue dans le cours

de Géométrie en L2.
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Exercice 3.5.9 (Changement de repére affine). Calculer, dans le repére canonique de R3,
la représentation matricielle de I'application affine g: R? — R3 telle que :

1. ¢(0,0,0) = (1,4,3), ¢g(1,0,0) = (4,4,4), g(1,1,0) = (0,0,1), g(1,1,1) = (1,1, 1),

2. g(1,1,1) = (0,1,1), ¢(7,0,0) = (3,-5,3), ¢g(7,7,0) = (5,—-2,9), ¢(7,7,7) = (11,0,6).

S’agit-il d’une isométrie (pour le produit scalaire usuel) ?

Exercice 3.5.10 (Ceci n’est pas une isométrie). Soit un plan euclidien V' et supposons
que deux vecteurs a et b sont linéairement indépendants. Montrer que {0, a, b} et {b,—a,b— a}
sont deux reperes affines. Donner la description matricielle par rapport a la base a,b de V de
I'unique bijection affine envoyant le premier repere sur le deuxieme, et montrer que ce n’est pas
une isométrie. En déduire que ces deux reperes ne peuvent pas étre orthonormaux en méme

temps.

Exercice 3.5.11 (Forme canonique d’une isométrie). Soit un espace euclidien V. Pour
f € O(V), montrer que ker(id— f) L im(id— f). En déduire que toute isométrie g = t,o f € E(V)
s’écrit de maniére unique comme g =ty o (t.o fot_.) ou fb =b. Autrement dit, on a g = t, 0 ¢’
ol ¢’ est une application affine ayant un point fixe, et b un point fixe de la partie linéaire de ¢’
(et de g). Montrer que b et g’ sont uniques pour cette propriété, et que l'on a t, o g’ = ¢’ o ty.

On appelle g = t; 0 ¢’ la forme canonique de g.

Solution. Soit z € ker(id — f) et y € im(id — f), c’est a dire, v — fx =0 et y = z — fz pour un
certainz € V. Alorsx-y =x-(z— fz2)=z-z—x-fz=x-z2— fx-fz =x-z—x-2z = 0 parce que f
préserve le produit scalaire. Ainsi L y pour tout x € ker(id— f) et y € im(id— f). Cela implique
(par le Théoreme du Rang) que ces sous-espaces vectoriels sont une décomposition orthogonale
de V. Notons F' = ker(id — f) pour le sous-espace des point fixes de f, et donc F+ = im(id — f).
Soit g = tq o f, alors on peut décomposer a = ap + apL, avec f(ap) = ap et apL = ¢ — fc
pour un certain ¢ € V, d'ott g = tq, 0ta,, © f = tap © (tco fot_c), comme voulu. Supposons
maintenant que g = tp, 0 (te; © f1 0t_¢,) = tp, © (te, © fo0t_¢,), et fiby = by et foby = by. Par
unicité de partie linéaire et translation, on obtient f = f; = f2 (et donc fb; = by et fby = bo) et
b1+ c1— fer = ba+ca— fea. Cette deuxiéme équation implique by —by = (co —c¢1) — f(ca —c1), et
ceci est donc un élément de ker(id— f)Nim(id— f), donc 0. Ainsi by = ba et ¢1— f(c1) = ca— f(c2),
d’ot aussi (te, o fiot_c ) = (tey © f1 0t_¢,), comme annoncé. Finalement, si g = t, 0 (t, 0 f) avec
fb = b, alors on vérifie facilement que ¢, 0 (tg0 f) =ts0tpo f =tgotmo f = (tao f) oty par

commutativité des translations. O

Exercice 3.5.12 (Décomposition orthogonale et isométrie linéaire). Soit une décompo-
sition V = E @ E+ d’un espace euclidien V. Montrer que f(E+) = f(E)* pour tout f € O(V).

Exercice 3.5.13 (Orientation d’un espace euclidien). Soient deux bases orthonormales
{e1,...,en} et {€'1,...,€n,} d'un espace vectoriel V', et f € O(V) 'unique isométrie linéaire en-
voyant 'une base sur l'autre. Lorsque det(f) = 1 on dit que les deux bases sont de méme
orientation, et sinon elles sont d’orientation opposée. On “oriente” un espace euclidien en choi-
sissant une base orthonormale que 'on déclare positive (ou directe). Montrer que les f € SO(V)

sont exactement les endomorphismes linéaires qui “préservent distance et orientation”.
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Exercice 3.5.14 (Produit vectoriel—definition). Soit une suite de vecteurs 1, ..., z,, dans
un espace euclidien V' de dimension n. Pour toute base orthonormale {ey, ..., e,} de V', on définit

a l'aide de la base duale (e], ..., e}) de 'espace dual V* = Lin(V,R), le déterminant (ou volume

€
Signé)

det(x1, ..., zp) = det(ej(z5));; € R
de la suite donnée. Montrer que ce déterminant est le méme pour toutes les bases orthonormales
de méme orientation, et qu’il change de signe entre deux bases d’orientations opposées. Choisis-
sons maintenant une orientation de V', et supposons que {ey,...,e,} est une base d’orientation

directe. Montrer que, pour tout xz1,...,z,_1 € V, 'application
¢: V= Ry det(zy,...,zp-1,Y)
est une forme linéaire sur V' (qui est indépendante de la base choisie). Montrer que I’application
Y: V=V =Lin(V,R): z— (y— z-y)

est un isomorphisme d’espaces vectoriels. Conclure que, pour tout z1,...,x,—1 € V, il existe un
unique z € V tel que
pour tout y € V : det(x1,...,xp—1,y) = 2 - y.

On dit alors que ce z € V est le produit vectoriel des x1,...,2,_1 € V, n0té z = 1 X ... X Tp_1

(ou aussi z =1 A... AZp_1).

Exercice 3.5.15 (Produit vectoriel—propriétés). Soit un espace euclidien V' de dimension
n avec une orientation choisie. Montrer que les coordonnées du produit vectoriel x1 X ... X x,—1
par rapport & une base directe {ey, ..., e, } sont exactement (det(z1,...,2n—1,€;)); € R™. Montrer
que la suite x1,...,x,_1 € V est libre si et seulement si le produit vectoriel x1 X ... X x,,_1 est non-
nul. De plus, si la suite z1, ..., x,_1 € V est libre, montrer que le produit vectoriel z1 X ... X ,,_1
est orthogonal & ’hyperplan (vectoriel) engendré par la suite (cela peut étre utile pour calculer
un vecteur normal & un hyperplan donné); et si la suite eq,...,e,—1 est orthonormale, alors

€1y .y n_1,€1 X ... X en_1 est une base orthonormale directe de V.

Exercice 3.5.16 (Produit vectoriel en dimension 3). Soit un espace euclidien V' muni

d’une base orthonormale directe {ej, e2, e3}. Montrer, pour =z = >, z;e; et y = > y;e;, que

. . . I Y1 é
xxy:det< 2 yQ) el—det< ! y1> ez—l—det( ! yl) eg=det | x2 y2 e2|,

I3 Y3 T3 Y3 T2 Y2 T3 Yz e

3 Ys €3

ou on développe le dernier “déterminant@’ vers sa troisiéme colonne. Montrer que

lz x ylI* + (z - y)* = =] [lyll?

21. Ce n’est pas un vrai déterminant (ses éléments ne sont pas tous des scalaires), mais un moyen mnémotech-

nique!
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et en déduire que ||z x y|| = ||z||||y|l|sin @] ou § est I'angle (non-orienté) entre x et y. Ainsi,
pour z et y linéairement indépendents, z x y est 'unique vecteur qui est : orthogonal a = et a y,
de norme ||z||||y|||sin 6], et tel que la base x,y,z x y est d’orientation positive. (On trouve cela

parfois comme définition dans les manuels scolaires.)

Exercice 3.5.17 (Exemples de symétries orthogonales). Faire des dessins pour “montrer”
toutes les symétries orthogonales linéaires de R, de R? et de R® (et indiquer en particulier les

réflexions et les renversements).

Exercice 3.5.18 (Matrice de Householder). Soit un vecteur v # 0 dans un espace eulidien
V, et H = (Rv)* I'hyperplan orthogonal & v. Montrer que la symétrie orthogonale (linéaire)

d’axe H est donnée par
x

sg: R" — R™: $r—>:n—2|| Hgv
v

Si V = R" et on écrit v € R™ comme une colonne (en identifiant R” = R™*1) montrer que la
matrice de sy par rapport a la base canonique est I — vat. (Cela s’appelle une matrice de
Householder, d’apres I'article [Alston Householder, Unitary triangularization of a nonsymmetric
matriz, Journal of the ACM, 1958].)

Exercice 3.5.19 (Valeurs propres). Soit un espace euclidien V. Montrer que les seules valeurs
propres réelles possibles de f € O(V) sont +1 et —1. Donner un f € O(V) sans aucune valeur

propre réelle.

Exercice 3.5.20 (Groupes orthogonaux en petite dimension). Donner explicitement les
éléments de O(n) et de SO(n) pour n € {0, 1,2}. Vérifier que SO(2) est commutatif et que O(2)

ne 'est pas.

Exercice 3.5.21 (Angle orienté dans un plan euclidien orienté). Soit un plan euclidien V'
orienté par une base orthonormale {ej, e2}. Montrer que, si f € SO(V) admet un point fixe non-
nul, alors f = id (et montrer que cela est faux pour f € O(V)). Montrer que, si © = z1e1 + z2e2

est tel que ||z|| = 1, alors la matrice
ry —x
( ! 2) € SO(2)
To T

correspond avec un élément de SO(V') envoyant e; sur x. En déduire que, pour tout z,y € V
tels que ||z|| = 1 = ||y||, il existe un unique f € SO(V) tel que fzr =y (et montrer que cela est
faux si dim (V') > 3). On sait (voir un exercice précédent) que tout f € SO(V') correspond (pour
la base choisie) a une unique matrice

sinf  cos#f

M = (COSH oo 0) avec 6 € R modulo 27.

L’angle orienté de x a y est alors, par définition, le nombre 8 € R, déterminé modulo 27, qui
correspond avec l'unique f € SO(2) envoyant = sur y; et ce f € SO(V) est alors la rotation

d’angle orienté 0. Avec ces notations, vérifier que

. i cos —sinb Y1 —Y2 r1 X9
fr =1y sietseulement si ) =
sinf cosf Yo Y1 —To X1
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(o x = z1e1 + x2e2 et y = y1e1 + y2e2) et en déduire que
cos =x-y et sin 0 = det(z,y).

Observer que toute base orthonormale directe donne le méme résultat pour I'angle 6; mais
lorientation choisie est importante : par rapport a la base {ea2,e1} (ou toute autre base or-
thonormale d’orientation opposée), 'angle orienté de x & y change de signe (ce qui explique la
terminologie). (Par ailleurs, comment faire pour calculer I’angle orienté entre deux vecteurs de

normes quelconques ?)

Exercice 3.5.22 (Encore un produit semidirect). Soit un plan euclidien V. Montrer que

la suite exacte courte
SOV) —— o(v) - (11, 1}

est scindée par ’homomorphisme s: {+1, —1} — O(V') envoyant —1 sur une réflexion aux choix.
Conclure qu’on a le produit semidirect O(V) = SO(V) x {41, —1}, c’est & dire, tout élément de
O(V) est soit une rotation (i.e. un élément de SO(V)), soit la composée d’une rotation avec la
réflexion choisie[?] (Notons, par ailleurs, que le produit semidirect O(V) = SO(V)x{+1, —1} est
non-commutatif, alors qu’il est composé de deux facteurs commutatifs.) Soit maintenant {ej, ea}
une base orthonormale de V, et considérons 'isomorphisme avec R? en envoyant cette base sur
la base canonique de R%. On a les isomorphismes induits O(V) =2 O(2) et SO(V) = SO(2), et

la “version matricielle” de la suite exacte courte ci-dessus,

S0(2) 0(2) %€ (11, -1}

Pour scinder cette suite, choisissons maintenant la réflexion “d’axe X”, dont la matrice est

S:<1 0)7
0 —1

et rappelons que la matrice d’une rotation est typiquement

sinf  cos

0 —sinf
Ry = (COS St > avec # € R modulo 27.

Montrer que RyS = SR_g = ReSR_ s, et conclure qu’il s’agit de la matrice de la réflexion dont
2 2

22. On a “la méme chose” en toute dimension n, mais pour n # 2 le groupe SO(n) est moins facile & décrire.
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I'axe fait un angle de 6 avec “I'axe X” de R?; notons-1a par Sp.

)

Y/\

Vérifier que

RoRy = Royy  RoSy = So+g  Solly =S9—¢  595¢ = Ro—¢
et interpréter géométriquement. (On a ainsi dressé la table du produit dans le groupe O(2).)

Exercice 3.5.23 (Isométrie linéaire de matrice orthogonale 2 x2). Déterminer I'isométrie

f:R? 5 R?: X+ AX (pour la géométrie euclidienne usuelle) lorsque A est :
01
1.
) (

1
2
V3

no
— N I\D‘
S
~—

Exercice 3.5.24 (Rotations et nombres complexes). Montrer que S! = {z € C | |z| = 1}

est un groupe (commutatif) pour la multiplication. Montrer que 1’application

a

—b
go:Sl—>SO(2):a+ibb—><Z )
est un isomorphisme de groupes. Montrer que
Y: R — S 0 e = cosh+isind

est un homomorphisme surjectif de groupes (pour l’addition sur R) dont le noyau est 27Z. Ainsi
I'isomorphisme SO(2) = S! = R/277Z identifie tout élément de SO(2) avec un nombre 6 € R,

déterminé a un multiple entier de 27 pres : on retrouve ’angle d’une rotation.

Exercice 3.5.25 (Groupe diédral : les symétries d’un polygone régulier). Dans le plan

euclidien orienté R? (“le plan usuel”), on considére un polygone régulier & n > 3 sommets,
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inscrit dans le cercle de centre (0,0) et de rayon 1. Le groupe diédral D,, est, par définition,
le sous-groupe de O(R?) laissant globalement invariant ce polygone. (Plus généralement, on
peut considérer le groupe des isométries laissant globalement invariant un polygone régulier a n

sommets inscrit dans un cercle quelconque ; on obtiendra un groupe isomorphe.)

AN EDOOOE

Si n est impair alors toute réflexion orthogonale dont I’axe relie un sommet au milieu du c6té
opposé est un élément de D, ; si n est pair alors toute réflexion orthogonale dont I'axe est soit
une diagonale, soit une médiane, est un élément de D,,. De toute facon, D,, contient exactement
n réflexions distinctes. Puis, quelque soit la parité de n, D, contient exactement n rotations
distinctes. Ainsi, on trouve explicitement les 2n éléments distincts de D,,. L’ensemble de ces

rotations 5
:{Rglﬁzk—7r pour 0 <k <n-—1}
n

est un sous-groupe (cyclique d’ordre n) de D,,. Si on note S pour une réflexion “au choix” dans
D,,, alors aussi

S = {id, S}
est un sous-groupe (cyclique d’ordre 2) de D,,. On vérifie sans difficulté que D,, = R, x §; et en
remplacant ces sous-groupes cycliques “géométriques” par des groupes cycliques “abstraites” on
peut définir “abstraitement” que D,, = C}, x C5. Un grand nombre de propriétés intéressantes

de D,, sont connues ; voir les références.

Exercice 3.5.26 (Sous-groupes finis de O(2)). Montrer que tout sous-groupe fini de SO(2)
est cyclique. En déduire que tout sous-groupe fini de O(2) est soit un groupe cyclique, soit un
groupe diédral (y compris les “cas dégénérés” pour n = 1 et n = 2). Ainsi, les seuls sous-groupes

finis de O(2) sont des groupes de symétries de polygones réguliers (hormis les cas dégénérés) !

Exercice 3.5.27 (Permutations d’une base orthonormale). Soit V' un espace euclidien
muni d’une base orthonormale {ey, ..., e, }. Montrer que toute permuation de ces vecteurs de base
produit un élément de O(V'). Pour n € {1,2,3}, déterminer la nature géométrique de chaque

permutation. Faire des dessins!

Exercice 3.5.28 (Rotation = 2 renversements). Soit V' un espace euclidien de dimension
3. Montrer que s: V' — V est une réflexion si et seulement si —s: V' — V est un renversement (=
symétrie orthogonale dont l’axe est une droite). Observer qu’un renversement est une rotation
d’angle m. Conclure que toute rotation est la composée de deux rotations d’angle 7 (et préciser

les axes). Faire un dessin !

Exercice 3.5.29 (Matrice d’isométrie linéaire donnée). Dans R3, donner la représentation

matricielle de la rotation
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oua=(1,2,1) et # = 7/6. Donner aussi la matrice de la rotaflexion déterminée par ces données.

(On peut éventuellement utiliser un logiciel de calcul.)

Exercice 3.5.30 (Isométrie linéaire de matrice orthogonale 3x3). Déterminer I'isométrie

f:R? - R3: X+ AX (pour la géométrie euclidienne usuelle) lorsque A est :

3 V3 1
i 3 1
1| -v8 1 _ V3
NC V8
1 V3 3
1 g 4
0 _Vv2 V2
2 2
9 | 2 _1 1
2 2 2
V- R
2 2 2
1 V33
1 s 4
3. -8 1 _ V3
’ Ve 2 NG
3 V3 _1
1 Vs 1
1 V3
z 0 =%
4 0 -1 0
V3 1
2 03
2 1 2
3 3 3
2 2 1
5135 3 —3
122
3 3 3
7 _4 _4
9 9 9
4 1 8
6 |-5 5 —9
4 8 1
9 9 9

Attention : pour déterminer une rotation ou rotaflexion, il faut donner I’axe, I’angle et le sens!

(On peut éventuellement utiliser un logiciel de calcul.)

Exercice 3.5.31 (Un sous-groupe étonnant). Montrer que I’application

M 0
¢: 0(2) > SO(3): M —
0 det(M)
est un homomorphisme injectif de groupes. Ainsi O(2) peut étre identifié avec un sous-groupe
de SO(3) (et tout sous-groupe de O(2) est aussi un sous-groupe de SO(3)). Interprétation

géométrique des éléments de ce sous-groupe ?

Exercice 3.5.32 (Projections orthogonales affines). Soit un espace affine V. Montrer que
g=tgo f:V — V est une projection affine (c’est a dire, g = t. o f o t_, pour une projection
linéaire f) si et seulement si g o g = g, si et seulement si fo f = f et fa =0 (et alors ¢ = a).
Donner I’axe et la direction de g, et montrer que ce dernier est déterminé a parallélisme pres.
Supposons maintenant que V est un espace euclidien muni d’une base orthonormale. Observer
qu’une projection orthogonale est entierement déterminée par son axe. Donner des conditions
nécessaires et suffisantes sur la représentation matricielle de g pour que g soit une projection

orthogonale. (Penser aux valeurs propres et la diagonalisation!)
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Exercice 3.5.33 (Symétries orthogonales affines). Soit un espace affine V. Montrer que
g=tgo f: V — V est une symétrie affine (c’est a dire, g = t.o0 f ot_. pour une symétrie linéaire
f) si et seulement si fo f =id et fa = —a (et alors ¢ = %a). Donner 'axe et la direction de
g, et montrer que ce dernier est déterminé a parallélisme prés. Supposons maintenant que V'
est un espace euclidien. Montrer que g est une isométrie si et seulement si g est une symétrie
orthogonale. Observer qu'une symétrie orthogonale est entierement déterminée par son axe.
Supposons ensuite qu’'une base orthonormale est donnée. Donner des conditions nécessaires et
suffisantes sur la représentation matricielle de g pour que g soit une symétrie orthogonale. (Penser

aux valeurs propres et la diagonalisation!)

Exercice 3.5.34 (Approximation par projection orthogonale). Soit un espace euclidien
V', et un sous-espace affine A C V. Notons p: V' — V la projection orthogonale (affine) sur A.
Déduire du Théoréme de Pythagoras que ||z — p(z)|| < ||z — al| pour tout z € V et tout a € A.
Autrement dit, la projection orthogonale de x sur A est la meilleure approximation (au sens de

la distance euclidienne) de x par un élément de A.

Exercice 3.5.35 (Exemple de projection). Dans R? avec sa base canonique, donner la
représentation matricielle de la projection d’axe P : x +y+ 2z = 1 et de direction D : x =y = z.

S’agit-il d’une projection orthogonale (pour le produit scalaire usuel) ?

Exercice 3.5.36 (Projection orthogonale sur une droite). Soit un espace euclidien V.
Montrer que la projection orthogonale (linéaire) sur une droite (vectorielle) Dy = Ruv est
x-v
Ppy:V = V:ie— —ou.
OREY
En déduire que la projection orthogonale (affine) sur une droite (affine) D = ab est
(b—=x)-(b—a) (x—a) - (b—a)

b—a)-(b—a)" (b—a).(b—a)b'

pp:V =>V:iz—

Exercice 3.5.37 (Réflexion par un hyperplan). Soit un espace euclidien V. Montrer que
la réflexion (linéaire) par un hyperplan (vectoriel) Hy = (Rv)* est
THy: V =V xHx—QMv.
v
En déduire que 'unique réflexion (affine) envoyant un point a sur un point distinct b est
-(a—»b b)-(a—0
vlab) oy @b asb)
(@—1b)-(a—0b) (a—1b)-(a—0b)

Illustrations : https://www.geogebra.org/m/vey9uxrj et https://www.geogebra.org/m/dzjkpxjs.

rg:V—=aVie—z—2 —-b)+

Exercice 3.5.38 (Projections et symétries). De chaque application affine donnée ci-dessous
sur R? (considéré avec sa géométrie euclidienne usuelle), déterminer s’il s’agit d’une projection
(orthogonale), d’une symétrie (orthogonale), d’un autre type d’isométrie, ou de aucun des cas

particuliers précédents. Pour les projections et les symétries : déterminer direction et axe.

1 1 1
1.gy:%%% yl|l+12
1 1 1
z 35 6/ \? 3
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1 1 1
_ |1 1 1
2. g =|35 35 3 y|+ | 1
1 1 1
z 2 3 6/ \? —2
x % ? 0 T V2
3.g =2 1 of|y|+]|-2
0 0 1 z 0
1 1 =1 =1
v 3 V18 V6 V2
- = =1
49 =|\vs % vz | |v] T 2
- -1 -1 1 . 1
Ve o Vizoo 2 V3

Exercice 3.5.39 (Représenter une isométrie affine). Dans R3, donner la représentation

matricielle de la rotation

)

a

lorsque @ = (1,0,1), b = (2,2,2) et § = /6. Donner aussi la représentation matricielle de la
rotaflexion déterminée par cette rotation suivie de la réflexion par le plan orthogonal passant

par a. (On peut éventuellement utiliser un logiciel de calcul.)

Exercice 3.5.40 (Réflexions affines). Soit un hyperplan vectoriel Hy C V' d’un espace vecto-
riel V de dimension n > 1, et sg: V — V la réflexion linéaire d’axe Hy. Si H = Hy+a = Hy+b,
montrer que

toosgpot_g =1%tp08g0t_p.

Ainsi, la réflexion affine d’axe H est déterminée par la direction Hy de H et n’importe quel

élément a € H. Illustrer par un dessin dans R? avec sa géométrie euclidienne usuelle.

Exercice 3.5.41 (Rotations affines). Soit une droite vectorielle Dy C V' d’un espace vectoriel
V de dimension 3, et g: V' — V la rotation linéaire d’axe Dg et d’angle 6. Si D = Dg+a = Hg+b,
montrer que

toorgot_g =tporgot_p.

Ainsi, la rotation affine d’axe D et d’angle 6 est déterminée par la direction Dg de D, nn’importe
quel élément a € D et I'angle . Illustrer (tant bien que mal) par un dessin dans R? avec sa

géométrie euclidienne usuelle.

Exercice 3.5.42 (Déterminer une isométrie affine). Donner le type, les éléments géomé-
triques, et les points fixes de I'isométrie g: R® — R3: X + AX + B (pour la géométrie usuelle
de R3) lorsque A et B sont :

3 V3
i B 1 1
1 —£ % —% et | —1
_1 V3 3 9

i s 4
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0 V2 _\2
V2 ? 12

2 —\7[ —5 5 et |0

2 1 1

-2 3 3 2
_1 3 3
1 Vs 1 3
V3 1 _ V3

3. s 2 NG et |1
3 V3 1 92
iR 1
1 V3

410 =1 0 |et]|1
3 1
$ 0 3 1
2 1 2
3 "3 3 0
2 2 1
1 2 2
“3 3 3 2
7 4 4
g "9 9 1
4 1 8

6. |-5 § —g|et]| 2
4 8 1
~5 ~9 9 —3

(On peut éventuellement utiliser un logiciel de calcul.)

Exercice 3.5.43 (Tournée générale). Exprimer des conditions sur un triangle abc dans un
plan euclidien V' pour qu’il existe une isométrie envoyant a sur b, b sur ¢ et ¢ sur a. Montrer que
cette isométrie est alors unique, et déterminer-la & ’aide de ses points fixes. Dans R? muni du
produit scalaire usuel et de la base canonique, donner la description matricielle de cette isométrie

lorsque a = (0,1), b= (%,0) et c = (\_7%,0).

Exercice 3.5.44 (Hyperplan médiateur). L’hyperplan médiateur de deux points distincts
a et b d’un espace euclidien V est I'unique hyperplan affine H C V orthogonal a ab et passant
par le milieu m de a et b. Montrer que H contient exactement les points équidistants a a et b.

Indication : exprimer que pm L ab.

Exercice 3.5.45 (Repeéres affines congruents). Soient des repeéres affines {ay,...,a,} et
{bo, ..., bp} d’un espace euclidien V' et notons g: V' — V 'automorphisme affine déterminée par
g(a;) = b;. Montrer que g est une isométrie si et seulement si dist(a;, aj) = dist(b;, bj) pour tout
i,j € {0,...,n}. Indication : généraliser la démonstration vue en L2 pour les isométries de R?,

en remplacant des droites médiatrices par des hyperplans médiateurs.

Exercice 3.5.46 (Théoréme de la médiane). Soit un parallélogramme abcd dans un espace

euclidien V. Montrer que
dist(a, b)? 4 dist(b, ¢)? 4 dist(c, d)? + dist(d, a)? = dist(a, ¢)? + dist(b, d)?.
En déduire le Théoréme de la médiane : dans tout triangle abc, si m est le milieu de bc alors
dist(a,b)? + dist(a, ¢)? = 2dist(a, m)? + %dist(b, c)?.

Conclure que abc est rectangle en a si et seulement si m est le centre du cercle circonscrit de

abe.
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Exercice 3.5.47 (Dilatations d’un espace euclidien). Soit un espace euclidien V. Montrer
que toute dilatation d € D(V') préserve les angles et envoie des spheres sur des spheres (et

préciser leffet sur le centre et le rayon). Quand est-ce que d est une isométrie ?

Exercice 3.5.48 (Droite d’Euler). Soit un triangle abc dans le plan R? (avec sa géométrie
euclidienne vue en L2) ; ainsi les trois médiatrices du triangle abe sont concourantes au centre o du
cercle circonscrit. (C’est vrai dans un plan euclidien quelconque.) Sachant que toute homothétie
préserve les angles (voir un exercice précédent), utiliser 'homothétie abc — a’t'c’ de centre g et
rapport —2 (voir un exercice précédent) pour identifier les hauteurs de abc avec les médiatrices
de a'b'c’ et en déduire que les hauteurs d’un triangle sont concourrantes en un point h, appelé

I’orthocentre.

Conclure que 'isobarycentre g, le centre o du cercle circonscrit et I'orthocentre h sont alignés

(et donner leur rapport) : ces trois points se trouve sur la droite d’FEuler du triangle abc.

C

Qe
Qe
e

Exercice 3.5.49 (Cercle des neuf points). Soit un triangle abc dans le plan R? (avec sa
géométrie euclidienne vue en L2) et g son isobarycentre. Montrer que I’homothétie de centre g
et rapport —% (étudiée dans un exercice précédent) envoie le cercle circonscrit de abc (de centre
0) sur un cercle passant par les trois milieux des cOtés; notons n pour le centre de ce cercle

médian :

Observer que le rayon du cercle médian est la moitié du rayon du cercle circonscrit. Montrer

qu’aussi 'homothétie de centre h et rapport % envoie o sur n (utiliser les résultats d’un exercice
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précédent), et ainsi le cercle circonscrit sur le cercle médian :

Par conséquent, le cercle médian passe aussi par les trois milieux des segments ha, hb et hc. En
déduire que la symétrie centrale de centre n envoie les milieux de ab, bc et ac sur les milieux de
he, ha et hb :

Montrer ensuite que I'homothétie de centre c et de rapport 2 envoie (par ce qui précede) le milieu

de ch sur h, et donc le cercle médian sur un cercle passant par a, b et h.

Finalement, montrer que la réflexion d’axe ab envoie ce dernier cercle sur le cercle circonscrit de

107



3.5. Ezxercices

abe (on utilise que toute réflexion est une isométrie) :

">

Ainsi le pied de la hauteur de ¢ sur ab est le milieu du segment hh’, et se trouve (par ’homothétie
de centre h et rapport %) aussi sur le cercle médian ; et idem pour les deux autres hauteurs de
abc. Somme toute, le centre n du cercle médian est sur la droite d’Euler, et le cercle médian

passe par neuf points remarquables : on 'appelle le cercle des neuf points de abc.

C

Vérifier finalement que [g, h;n, 0] = —1, encore une division harmonique !

Exercice 3.5.50 (Similitude linéaire—définition). Soit un espace euclidien V' de dimen-
sion n > 1. Pour une application linéaire f: V' — V non-constante, montrer I’équivalence des
conditions suivantes :
(a) (“f multiplie les distances”) il existe A € RJ tel que ||fz — fy| = M|z — y|| pour tout
z,y eV,
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(b) il existe A € RJ tel que || fz|| = A||z|| pour tout z € V,

(c) il existe A € R{ tel que A~1f € O(V),

(d) il existe K € R tel que fz - fy = k(z - y) pour tout =,y € V,
) (“f péserve lorthogonalité”) x -y = 0 implique fz - fy = 0 pour tout x,y € V,
)

(e
Iy Ty pour tout z,y € V\{0}.

f -
( Tzl Tellal
n

On dit alors que f est une similitude (linéaire) (et que A € R} est son rapport).

(“f préserve les angles”) f est bijective e

Solution “analytique”. Les équivalences (a < b < ¢ < d) sont faciles. Notons que 'on a A = /k
et ker(f) = {0}. Ainsi (a,b,c,d) impliquent facilement (e) et (f). Puisqu’aussi (f = e) est
évident, il suffit de montrer (e = b). Supposons donc que f est une application linéaire non-

constante qui préserve l'orthogonalité. Si z -y # 0 (et donc en particulier x # 0 # y) on pose

a:-y
Z=Y— 57
Y )2
et alors
a;‘y $'y
pEm e ) =0 pler 9 =0

donc par hypothese et par linéarité de f on peut vérifier que

c’est a dire,
fo-fy _ Nfal?
Ty >

En échangeant x et y dans ce raisonnement, on trouve aussi

fa-fy _ Iyl
Ty [

et on peut conclure que, pour tout x -y # 0,

I fall _ Ifyll
=1 = Tl

Siz#0#ymaisz-y=0,alorsz- (z+y)#O0ety-(x+y)#0 (et donc z +y # 0), et par
I’argument ci-dessus on a

Ifzll _ If @+l _ [yl

] =+ yll Iyl

Somme toute, puisque f # 0 par hypothese, on a une fonction constante

[REdl
]

c’est & dire, il existe A € R tel que || fz|| = A||z|| pour tout  # 0 dans V'; et cette condition et

VA{0} = RS : 2

bien str aussi satisfaite pour z = 0. On a donc montré (b). O

23. Cette condition assure que fz # 0 si z # 0, et on peut donc avoir || fz|| dans le dénominateur.
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Exercice 3.5.51 (Groupe des similitudes linéaires). Soit un espace euclidien V' de dimen-
sion n > 1. Montrer que I’ensemble S(V') des similitudes linéaires est un sous-groupe de GL(V),
et contient O(V') comme sous-groupe (une isométrie étant une similitude de rapport 1). Montrer
que 'application

S(V) = RI xO(V): fs(MAT)

(ot A est le rapport de f) est un isomorphisme de groupes (pour la multiplication sur R[J{).

Montrer que ’application
H(V)— S(V): Aid — |A|(sgn(A)id)

est un homomorphisme injectif de groupes. (Ainsi une homothétie linéaire de rapport A € Ry

est une similitude linéaire de rapport |A|.)

Exercice 3.5.52 (Rectangles, losanges, carrés). On travaille dans un espace euclidien V.
On dit qu’un parallélogramme abed est un rectangle si ses quatre angles sont droits, un losange si

ses quatre cotés sont de méme longueur, et un carré si c’est a la fois un rectangle et un losange.

/7T

Montrer qu'un parallélogramme abcd est

(a) un rectangle si et seulement si un angle est droit,

(b) un losange si et seulement si ses diagonales sont orthogonales,

(c) un carré si et seulement si un angle est droit et ses diagonales sont orthogonales.
(Indication : utiliser les différentes caractérisations d’un parallelogramme, vues dans un exercice

du premier chapitre.)

Solution. Dans un parallélogramme abcd on a,

d c

par un exercice d’'un chapitre précédent, que a—d = b—c et a—b = d—c. Ainsi, si (par exemple)

I’angle en a est droit,

d c
||
a b

alors de (b —a) - (d — a) = 0 on obtient également (b —a)-(c—5) =0, (c—d)-(d—a) =0 et

(c—d)-(c—b) = 0; c’est a dire, les trois autres angles sont aussi droits. Par ailleurs, toujours dans
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ce méme exercice d'un chapitre précédent, on a vu que les diagonales dans un parallélogramme

abed se coupent en leur milieu.

a b

C’est a dire, on a toujours ||b —m| = ||d — m|| et aussi b —m = —(d —m) (et de méme pour les

autres demi-diagonales). Mais (pour tout parallelogramme) on vérifie aussi facilement que
la = 0] = lla — m|* = 2(a —m) - (b —m) + [|b— m||?

et de méme
la —d|* = lla —m|* = 2(a —m) - (d —m) + [|d — m][*.

Si maintenant les diagonales sont orthogonales, c’est a dire (a—m)(b—m) =0 = (a—m)(d—m),
alors on obtient ||a — b|| = |ja — d|| (et on répete 'argument pour les autres cotés). (Ceci est, en

gros, le Théoreme de Pythagoras.) Réciproquement, si ||a — b|| = ||a — d||, alors on déduit que
(@=m)-(b—m)=(a—m)-(d—m)=(a—m)(—(b—m)),
et cela implique que ce produit scalaire est nul, donc que les diagonales sont orthogonales. [J

Exercice 3.5.53 (Similitudes affines). Soit V un espace euclidien, et g € GA(V) un auto-
morphisme affine. Montrer ’équivalence de :

(a) g=1tf avect € T(V) et f une similitude linéaire,

(b) g préserve les angles,

(c) g préserve l’orthogonalité,
(@)

)

(e) g multiplie les distances par un facteur A € Rg .

g = hg’ avec h une homothétie (affine) et ¢’ une isométrie (affine),

Solution “géométrique”. Les implications (a = b = ¢) et (d = a) ainsi que 1’équivalence (d < e)
sont triviales. Pour (¢ = d), soit un repére affine orthonormale {a, ai, ..., a,} de V, alors tout

triple apa;a; définit un (unique) carré :

aj ¢

w0 +a; —ag
ag a;

Par un exercice précédent, on sait qu’il s’agit de parallélogrammes dont les cétés et les diago-
nales sont perpendiculaires. Si g est un automorphisme affine préservant 1’orthogonalité, alors g
envoie ces carrés sur des (vrais) carrés ayant deux-a-deux un c6té commun : ainsi les vecteurs
(ga; — gag)izo sont de méme longueur, disons de longueur A € R{, et deux-a-deux orthogonaux.
Autrement dit, 'automorphisme affine g’ := hyq) x-19 (00 hgey x-1 = Lgay © (Atid) o t_gq, est
’homothétie affine de centre gg et de rapport A~1) envoie un repére affine orthonormale sur un

repere affine orthonormale, et est donc une isométrie affine. O
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Annales

DS de mars 2025

1. Soit V' un espace vectoriel de dimension finie sur un corps K tel que car(K) # 2.

(a) Donner la définition de ‘sous-espace affine’ dans V.

) Démontrer que, par deux points distincts a,b € V', passe une et une seule droite affine ab.
(c) Donner la définition de ‘milieu’ de deux points a,b € V.

) On considére maintenant deux droites affines disctinctes ab et ac. Montrer par un calcul
barycentrique que, pour tout point x € V en dehors de ces deux droites, il existe x1 € ab

et o9 € ac tel que x est le milieu de x; et xzo.

. Soit abc un triangle dans un espace vectoriel de dimension finie.

(a) Enoncer (sans démonstration) le lemme vu en cours caractérisant la colinéarité de trois
points z,y, z € {(a,b,c) a 'aide d’'un déterminant.

(b) Enoncer et démontrer le Théoréme de Menelaos vu en cours.

. On travaille dans ’espace vectoriel R3.

(a) Donner I’équation cartésienne du plan affine P de direction R(—1,1,1)+R(1,1,0) et passant
par (1,0,1).

(b) Donner I’équation cartésienne du plan affine ) passant par (0,2,1) et parallele au plan
d’équation cartésienne 3z —y + z = —1.

(c) Donner la direction et un point de passage de 'intersection P N Q.

. Ci-dessous V' et W sont des espaces vectoriels de dimension finie.

a) Donner la définition de ‘application affine’ g: V — W vue en cours.
pPp g

(b) Démontrer qu’une application affine g: V' — W préserve les barycentres.

Examen de mai 2025

. Soit un espace vectoriel V' sur un corps K.

(a) Donner la définition de ‘partie affinement libre’ {aq, ...,ax} C V.
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Montrer que, si {ag,...,ar} C V est une partie affinement libre, alors tout = € (ao, ..., ag)
s’écrit d’au plus une maniere comme un barycentre des a;’s.
Dans le plan R? (avec sa géométrie euclidienne habituelle), exprimer les points z, y et z

comme barycentre des points a, b et ¢ dans la situation suivante :

2. Soit V un espace vectoriel de dimension finie sur un corps K.

()

Donner la définition de ‘dilatation’ d € D(V).

Montrer qu’une dilatation envoie toute droite de V' sur une droite parallele.

Donner (sans démonstration) la classification des dilatations selon leurs points fixes.
Soient deux droites affines distinctes sécantes en un point « dans V, et trois points distincts

sur chaque droite, disons a, b, c et a’, ¥, ¢/, qui sont aussi distincts du point z. Montrer que,

si ab’ /) bd et a'b J/ b'e, alors aussi aa’ J/ ec.

Pour V = R3 et K = R, existe-t-il une dilatation d € D(V) telle que d(—2,1,3) = (-2, 1,3)

et d(1,1,0) = (4, —1,2) ? Si oui, donner-la; sinon, expliquer pourquoi pas.

3. Soit V un espace euclidien.

(a)
(b)
(c)

Définir les groupes O(V') et E(V), et exprimer leur relation (sans démonstration).
Montrer que tout f € O(V') preséserve le produit scalaire.

Définir ‘angle (non-orienté)’ Labc pour trois points a,b,c € V.
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(d) Montrer que tout g € E(V') préserve les angles.

4. Soit 'application linéaire

x 01 0 x
fRE=R: [y|l—10 0 1
z 1 0 0 z

et considérons 'espace vectoriel R3 avec sa géométrie euclidienne usuelle.
(a) Montrer que f € O(R3).

(b) Déterminer le type et les éléments géométriques de f.

Rattrapage de juin 2025

1. Soit un espace vectoriel V' de dimension finie sur un corps K.
(a) Donner la définition de ‘sous-espace affine’.
(b) Démontrer que 'intersection de sous-espaces affines est un sous-espace affine ou vide.
(c) Dans R3, calculer 'intersection de A = R(—1,0,1)+R(1,1,1)+(2,—1,2) et B : 3x—2y+2 =
2.

2. Pour les deux parallélogrammes ajagasay et bibabsby ci-dessous (dans le plan RQ), montrer que

les milieux m; des segments a;b; forment aussi un parallélogramme.

as b4
my ms3
a4

m1 mo
aq b2

3. Soient V' et W des espaces vectoriels de dimensions finies sur un corps K.
(a) Montrer que, pour toute translation ¢: V' — V et toute application linéaire f: V — W, il
existe une unique translation t': W — W, telle que fot =1t'o f.
(b) Montrer que, si to f = t' o f’ pour deux translations ¢,#': V' — V et deux applications
linéaires f, f': V — W alorst =t' et f = f'.
(¢) Donner la définition de ‘application affine’ entre deux espaces vectoriels. Pourquoi les points
(a) et (b) sont-ils pertinents pour cette définition ?
4. Soit abc un triangle dans un plan vectoriel V sur un corps K, et notons par p: V — V la
projection affine d’axe ab et de direction ac.
(a) Déterminer p(a), p(b) et p(c).

(b) En déduire que la description explicite de p en termes de barycentres est
p: V= V:(aa+ Bb+yc) = ((a+v)a+ Bb).

(c) Poura = (—1,1),b=(0,2) et c = (3, —1) dans V = R?, calculer I'image par p de z = (2, 3).
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5. Soit I'application linéaire

7 4 4
z 5 ~9 "9 (”*
- R3 s R3: o4 1 _8
iR =R |y -5 3 Sy
4 8 1
z 9 "9 9 z

et considérons I'espace vectoriel R3 avec sa géométrie euclidienne usuelle.
(a) Montrer que f € O(R3).

(b) Déterminer le type et les éléments géométriques de f.
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