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Der wesentlichste Begriff, der bei den folgenden
Auseinandersetzungen notwendig ist, ist der
einer Gruppe von räumlichen Änderungen.

Le concept le plus essentiel, nécessaire dans les
discussions qui suivent, est celui de groupe de
transformations spatiales.

Felix Klein (1849–1925)
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1. Espaces affines

1.1. Sous-espace affine

Un espace vectoriel V sur un corps K est un ensemble de vecteurs dont on peut calculer toute
combinaison linéaire : pour tout x1, ..., xk dans V et tout α1, ..., αk dans K, il existe un unique∑

i αixi dans V ; et bien sûr il faut des axiomes adéquats pour gérer cette opération. Un sous-
espace vectoriel de V est un sous-ensemble S ⊆ V fermé pour les combinaisons linéaires. Tout
espace vectoriel V admet une base, et chaque base est de même cardinal : c’est la dimension
de V . Dans la suite, nous allons considérer uniquement des espaces vectoriels de dimension
finie.

Voici la notion cruciale en géométrie affine :

Définition 1.1.1. Soit un espace vectoriel V . La translation par a ∈ V est l’application

ta : V → V : x 7→ x+ a.

Notons qu’une translation n’est pas une application linéaire (sauf la translation par 0 ∈ V ) !
Cependant, toute translation est bijective, et il est facile de voir que :

Proposition 1.1.2. Soit un espace vectoriel V . L’ensemble T (V ) des translations est un sous-
groupe de Bij(V ), isomorphe à (V,+, 0), et donc commutatif.

Par l’image directe de ta : V → V : x 7→ x+ a, on peut translater tout sous-ensemble de V :
pour S ⊆ V on écrira S + a := ta(S) = {x+ a | x ∈ S}.

0

a

S

S + a

Pour les sous-espaces vectoriels de V , on a la situation suivante :

Lemme 1.1.3. Soit un espace vectoriel V . Pour des sous-espaces vectoriels E,F ⊆ V et des
vecteurs a, b ∈ V on a :

1. E + a = E si et seulement si a ∈ E,

2. E + a = F + b si et seulement si E = F et a− b ∈ E,

3. pour tout b ∈ E + a on a E + a = E + b.
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1.1. Sous-espace affine

Démonstration. (1) Si E + a = E alors il existe x0 ∈ E tel que x0 + a = 0, et donc a = −x0

est aussi un élément de E. Réciproquement, si a ∈ E alors pour tout x ∈ E on a d’un côté
x+ a ∈ E donc E + a ⊆ E, et de l’autre x = (x− a) + a avec x− a ∈ E donc E ⊆ E + a. (2) Si
E + a = F + b alors E + (a− b) = F . Puisque 0 ∈ F , il existe un x0 ∈ E tel que x0 + a− b = 0.
Ainsi a− b = −x0 est aussi un élément de E ; et dans ce cas, on a bien F = E+ (a− b) = E par
la première assertion. L’autre implication suit de la première assertion. (3) Suit directement. □

Ce premier résultat justifie la notion suivante :

Définition 1.1.4. Soit un espace vectoriel V . Un sous-espace affine A ⊆ V est l’image par
une translation (par n’importe quel élément de A) d’un (nécessairement unique) sous-espace
vectoriel 1 de V , que l’on appelle alors sa direction. La dimension d’un sous-espace affine est la
dimension de sa direction. Deux sous-espaces affines sont parallèles s’ils ont même direction.

Explicitement, si E ⊆ V est un sous-espace vectoriel et a ∈ V , alors l’ensemble

A = ta(E) = {x+ a ∈ V | x ∈ E} = E + a

est, par définition, un sous-espace affine de direction E et point de passage a ∈ A.

0

a

E

A = ta(E) = E + a

Autrement dit, A ⊆ V est un sous-espace affine s’il existe a ∈ A tel que

E = t−a(A) = {x− a | x ∈ A} = A− a

est un sous-espace vectoriel ; et par le Lemme ci-dessus, ce sous-espace vectoriel est unique et
est donnée par E = A− a pour tout a ∈ A.

0

a
b

a− b

A = E + a = E + b

E = A− a = A− b

Il est commode d’écrire A0 pour la direction d’un sous-espace affine A ⊆ V ; et si B ⊆ V est
un autre sous-espace affine, on écrira A // B lorsque A0 = B0, c’est à dire, lorsque A et B sont

1. Cette définition implique en particulier qu’un sous-espace affine ne peut pas être vide. Dans certaines
références on inclut l’ensemble vide comme sous-espace affine (“de dimension −1”).
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1. Espaces affines

parallèles.

0

a

b

A = A0 + a

A0 = B0

B = B0 + b

Clairement, si dim(V ) = n, alors pour tout k ≤ n il existe des sous-espaces affines de dimension
k ; et la dimension de tout sous-espace affine est au plus n. On parle de droites affines (plans af-
fines, hyperplans affines) lorsque la direction est une droite vectorielle (plan vectoriel, hyperplan
vectoriel). Les points de V sont exactement ses sous-espaces affines de dimension 0.

Notons bien la terminologie : tout élément v ∈ V est d’une part un vecteur, et d’autre part
un point. Bien sûr, c’est deux fois la même chose ! Mais en parlant de “vecteur” on insiste sur
la nature vectorielle de l’espace V , alors que le mot “point” évoque plutôt la nature affine de
l’espace V . Par exemple, une droite affine est déterminée par deux points (distincts), alors que
deux vecteurs (indépendants) déterminent un sous-plan vectoriel. Par ailleurs, l’élément 0 ∈ V
est un vecteur très particulier (le neutre pour la somme !), alors que c’est un point comme tout
autre.

Il est maintenant presque banal de noter :

Proposition 1.1.5 (5e Postulat d’Euclide). Soit V un espace vectoriel. Pour tout sous-
espace affine A ⊆ V et tout point a ∈ V , il existe un unique sous-espace affine B ⊆ V parallèle
à A et contenant a.

0

a

A0

A

B

0

a A0

A

B

Démonstration. On pose B = A0 + a. Si B′ est un autre sous-espace affine parallèle à A, alors
nécessairement B′ = A0 + b. Ainsi a ∈ B′ si et seulement si a = x + b pour un certain x ∈ A0,
donc a− b ∈ A0. Cela implique B = A0 + a = A0 + b = B′. □

Autrement dit, pour toute dimension k ≤ n, on a une action du groupe T (V ) ∼= (V,+, 0) sur
l’ensemble des sous-espaces affines de dimension k de V ; l’orbite d’un sous-espace affine A ⊆ V
est l’ensemble des sous-espaces affines parallèles à A. Pour les points de V (i.e. pour k = 0),
l’action de T (V ) est simplement transitive : pour tout a, b ∈ V il existe un unique t ∈ T (V ) tel
que ta = b. (Voir les exercices pour un approfondissement de ce point de vue.)
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1.2. Sous-espace affine engendré

1.2. Sous-espace affine engendré

L’intersection de sous-espaces vectoriels est toujours un sous-espace vectoriel. Pour les sous-
espaces affines on a plutôt :

Proposition 1.2.1. Une intersection de sous-espaces affines (Ai)i ⊆ V d’un espace vectoriel V
est soit vide, soit un sous-espace affine (dont la direction est alors l’intersection des directions).

Démonstration. Supposons que a ∈
⋂

iAi, alors par bijectivité 2 de ta : V → V : x 7→ x+ a on a
(
⋂

iAi) − a =
⋂

i(Ai − a), qui – en tant qu’intersection de sous-espaces vectoriels – est bien un
sous-espace vectoriel de V . □

Par conséquent, pour tout sous-ensemble non-vide X ⊆ V d’un espace vectoriel, l’intersection
de tous les sous-espaces affines contenant X est l’unique plus petit sous-espace affine contenant
X. On l’appelle le sous-espace affine engendré par X, noté ⟨X⟩, ou tout simplement ⟨a0, ..., ak⟩
si X = {a0, ..., ak}.

Le sous-espace affine engendré par deux points disticts a, b ∈ V est au minimum de dimension
1 (car ça ne peut pas être un singleton !). Pour que D ⊆ V soit une droite affine contenant a et
b, il faut que sa direction soit une droite vectorielle D0 = Kv telle que D = D0 + a. Mais alors
b ∈ D implique que b = αv+ a pour un certain α ̸= 0 (car a ̸= b), et donc v = α−1(b− a) ; ainsi
nécessairement D0 = K(b− a) et D = K(b− a) + a. Autrement dit,

x ∈ D ⇐⇒ ∃α ∈ K : x = α(b− a) + a

⇐⇒ ∃α, β ∈ K : x = αa+ βb et α+ β = 1.

Plus généralement on a :

Proposition 1.2.2. Soit un espace vectoriel V . Le sous-espace affine engendré par {a0, ..., ak} ⊆
V est

⟨a0, ..., ak⟩ = {
k∑

i=0
αiai | α0, ..., αk ∈ K,

k∑
i=0

αi = 1}.

Démonstration. Pour faciliter les notations, posons S = {
∑k

i=0 αiai | αi ∈ K,
∑k

i=0 αi = 1},
alors on a (attention aux indices des sommes dans les deux dernières lignes !)

S − a0 = {
( k∑

i=0
αiai

)
− a0 | α0, ..., αk ∈ K,

k∑
i=0

αi = 1}

= {
( k∑

i=0
αiai

)
−
( k∑

i=0
αi

)
a0 | α0, ..., αk ∈ K,

k∑
i=0

αi = 1}

= {
k∑

i=0
αi(ai − a0) | α0, ..., αk ∈ K,α0 = 1−

k∑
i=1

αi}

= {
k∑

i=1
αi(ai − a0) | α1, ..., αk ∈ K}.

2. Pour toute fonction f : X → Y , l’image directe preserve les réunions quelconques ; et si f est injective alors
l’image directe preserve aussi les intersections quelconques.
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1. Espaces affines

On voit ainsi que S−a0 est le sous-espace vectoriel engendré par {a1−a0, ..., ak−a0}, et donc S
est un sous-espace affine contenant {a0, ..., ak}. Par ailleurs, si A est un autre sous-espace affine
contenant {a0, ..., ak}, alors sa direction A0 = A− a0 est un sous-espace vectoriel contenant en
particulier {a1 − a0, ..., ak − a0}, et donc aussi tout S − a0. Ainsi on a S ⊆ A0 + a0 = A, et S
est donc bien l’intersection de tous les sous-espaces affines contenant {a0, ..., ak}. □

Pour faciliter la discussion qui suit, introduisons la terminologie (classique) suivante :

Définition 1.2.3. Soit un espace vectoriel V et {a0, ..., an} ⊆ V , alors l’expression

α0a0 + ...+ αkak avec α0 + ...+ αk = 1 dans K

est appelée le barycentre 3 des points a0, ..., ak de coefficients (ou de poids) α0, ..., αk.

Ainsi on peut résumer que le sous-espace affine engendré ⟨a0, ..., ak⟩ contient exactement tous
les barycentres (aussi appelés combinaisons affines) des points a0, ..., ak.

Pour deux points distincts a ̸= b, le sous-espace affine engendrée par a et b est bel et bien
l’unique droite affine passant par a et b. Pour simplifier les notations dans la suite, on écrira ab
pour cette droite affine. Sa direction est (ab)0 = K(b − a), montrant immédiatement (à l’aide
du “5e Postulat”) que :

Corollaire 1.2.4. Soit un espace vectoriel V . Pour a ̸= b, c ∈ V , l’unique droite affine parallèle
à ab et passant par c est K(b− a) + c.

Ces droites affines nous aident à caractériser les sous-espaces affines quelconques, confirmant
ainsi l’idée géométrique qu’un sous-espace affine de V est “rectiligne dans toute direction” :

Proposition 1.2.5. Soit V un espace vectoriel sur un corps K de car(K) ̸= 2. Alors un sous-
ensemble A ⊆ V est un sous-espace affine si et seulement si A ̸= ∅ et pour tout a ̸= b ∈ A aussi
la droite affine contenant a et b est dans A.

Démonstration. Pour tout a ̸= b ∈ A on a ab = ⟨a, b⟩ ⊆ A parce que la droite affine ab est
l’espace affine engendré par {a, b}. Réciproquement, prenons a ∈ A ̸= ∅ ; il suffit de vérifier que
A − a est un sous-espace vectoriel. (i) Bien sûr, 0 = a − a ∈ A − a. (ii) Pour 0 ̸= x ∈ A − a et
α ∈ K on a aussi α((x+ a)− a) + a = αx+ a ∈ A donc αx ∈ A− a (et pour x = 0 on est dans
le cas précédent).

0
x αx

A− a

a
x+ a

α((x+ a)− a) + a

A

0

x

y
m− a 2(m− a) = x+ y

A− a

a

x+ a

y + a

m = 1
2(x+ y) + a

A

3. D’après les travaux de August Ferdinand Möbius (1790–1868), notamment son livre Der barycentrische
Calcul, publié en 1827 à Leipzig.
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1.2. Sous-espace affine engendré

(iii) Pour x ̸= y ∈ A−a on a x+a, y+a ∈ A et donc tout b = α((x+a)−(y+a))+(y+a) ∈ A (c’est
la droite affine passant par x+a et y+a). Posant α = 1

2 on retrouve un pointm = 1
2(x+y)+a ∈ A,

et donc m − a = 1
2(x + y) ∈ A − a, et ainsi (par le cas précédent) 2(m − a) = x + y ∈ A − a.

(Pour x = y on est dans le cas précédent.) □

Dans cette démonstration on a utilisé que 2 ̸= 0 dans K (pour calculer le “milieu” d’un segment).
Et en effet, l’énoncé est faux dans p.e. (F2)2 : le sous-ensemble A = {0 = (0, 0), a = (1, 0), b =
(0, 1)} contient les droites 0a, 0b et ab, mais n’est pas affine. (L’ensemble contient 0, donc est
un sous-espace affine si et seulement si c’est un sous-espace vectoriel ; mais alors il faudrait que
a+ b ∈ A, quod non.) On peut enlever cette restriction, avec un énoncé quelque peu adapté :

Proposition 1.2.6. Soit V un espace vectoriel. Alors un sous-ensemble A ⊆ V est un sous-
espace affine si et seulement si A ̸= ∅ et pour tout a ̸= b, c ∈ A aussi la droite affine parallèle à
ab et passant par c est dans A.

Démonstration. Rappelons que la droite affine parallèle à ab et passant par c est K(b−a)+c. Si
A ⊆ V est un sous-espace affine, alors pour tout a ̸= b ∈ A on a b−a ∈ A0, donc K(b−a) ⊆ A0,
et donc la droite affine K(b− a) + c est bien dans A = A0 + c pour tout c ∈ A. Réciproquement,
supposons que A ̸= ∅ contient non seulement toutes les droites affines passant par deux de
ses points, mais aussi toutes les droites affines parallèles à celles-là et passant par un troisième
point de A. Les points (i) et (ii) de la démonstration précédente restent valables. On donne un
argument alternatif pour le point (iii), n’utilisant pas l’hypothèse 2 ̸= 0.

0
p− a = x+ y

x

yA− a

a

x+ a

y + a

p = ((x+ a)− a) + (y + a)

A

Soit a ∈ A ; pour x, y ∈ A− a on a x + a, y + a ∈ A et donc aussi ((x + a)− a) + (y + a) ∈ A,
car c’est un point de la droite parallèle à la droite passant par x+ a et a, et passant par y + a.
Il suit que x+ y ∈ A− a comme voulu. □

Pour a ̸= b, c ∈ V , la droite affine K(b−a)+c est un sous-ensemble du sous-espace affine ⟨a, b, c⟩.
Ainsi, avec ce qui précède, on peut reformuler la notion de sous-espace affine aussi comme :

Corollaire 1.2.7. Soit un espace vectoriel V . Un sous-ensemble ∅ ≠ A ⊆ V est un sous-espace
affine si et seulement si pour tout {a0, ..., ak} ⊆ A aussi ⟨a0, ..., ak⟩ ⊆ A ; et il suffit de vérifier
cela pour k = 2 en général, et pour k = 1 lorsque car(K) ̸= 2.

Autrement dit, un sous-ensemble non-vide A ⊆ V est un sous-espace affine si et seulement s’il
est fermé pour les barycentres (i.e. les combinaisons affines).

6



1. Espaces affines

Remarquons finalement qu’un barycentre de {0, a1, ..., ak} est exactement la même chose
qu’une combinaison linéaire de {a1, ..., ak}, et donc le sous-espace affine ⟨0, a1, ..., ak⟩ est en fait
exactement le sous-espace vectoriel engendré par {a1, ..., ak}.

1.3. Repère affine

Si une droite affine D ⊆ V contient trois points distincts a, b, c, alors D = ⟨a, b, c⟩, mais bien sûr
cette présentation de D n’est pas “optimale” au sens suivant :

Définition 1.3.1. Soit un espace vectoriel V . On dit que {a0, ..., ak} ⊆ V est affinement libre
si aucun ai0 ∈ {a0, ..., ak} n’est barycentre des autres points dans cet ensemble.

Si {a0, ..., ak} ⊆ V est affinement libre, alors ces k + 1 points sont certainement distincts. Par
ailleurs, un singleton {a} ⊆ V est toujours affinement libre ; et {a, b} ⊆ V est affinement libre
si et seulement si a ̸= b, auquel cas le sous-espace affine engendré est la droite affine ab. Aussi,
{a, b, c} ⊆ V est affinement libre si et seulement s’il s’agit de trois points distincts et non-alignés
(c’est à dire, un triangle non-aplati), auquel cas ces points engendrent un sous-plan affine. En
général :

Proposition 1.3.2. Soit un espace vectoriel V . Pour {a0, ..., ak} ⊆ V , les assertions suivantes
sont équivalentes :

1. {a0, ..., ak} est affinement libre,

2. il existe 0 ≤ i0 ≤ k tel que {ai − ai0 | i ̸= i0} est linéairement libre 4,

3. pour tout 0 ≤ i0 ≤ k, {ai − ai0 | i ̸= i0} est linéairement libre,

4. le sous-espace affine ⟨a0, ..., ak⟩ est de dimension k,

5. tout a ∈ ⟨a0, ..., ak⟩ s’écrit d’une et une seule façon comme barycentre des {a0, ..., ak}.

Démonstration. (2⇔ 3⇔ 4) Pour tout 0 ≤ i0, i1 ≤ k, les sous-espaces vectoriels

⟨a0, ..., ak⟩ − ai0 et ⟨a0, ..., ak⟩ − ai1

sont identiques, parce que ce sont deux façons différentes de calculer la direction du sous-espace
affine ⟨a0, ..., ak⟩. Nous avons déjà calculé que ces sous-espaces vectoriels sont engendrés (linéai-
rement) par, respectivement,

{ai − ai0 | i ̸= i0} et {ai − ai1 | i ̸= i1}.

Ainsi, {ai − ai0 | i ̸= i0} contient k vecteurs linéairement indépendants si et seulement si le
sous-espace vectoriel ⟨a0, ..., ak⟩ − ai0 est de dimension k, si et seulement si le sous-espace affine
⟨a0, ..., ak⟩ est de dimension k, si et seulement si le sous-espace vectoriel ⟨a0, ..., ak⟩ − ai1 est de
dimension k, si et seulement si {ai− ai1 | i ̸= i1} contient k vecteurs linéairement indépendants.

4. “Linéairement libre” (ou linéairement indépendant) veut dire libre au sens de sous-espaces vectoriels.
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1.3. Repère affine

(1⇒ 2) Supposons que α1(a1 − a0) + ...+ αk(ak − a0) = 0. Si αk ̸= 0 alors

ak = 1
αk

(
(

k∑
i=1

αi)a0 − α1a1 − ...− αk−1ak−1
)

montre que ak est un barycentre de {a0, ..., ak−1}. Cela est exclu par hypothèse (1), donc αk = 0.
On peut répéter l’argument pour tout i ∈ {1, ..., k}, pour conclure que α1 = ... = αk = 0, et
donc {a1 − a0, ..., ak − a0} est linéairement libre. On a donc montré (2) pour i0 = 0.

(3⇒ 1) Si a0 est un barycentre des a1, ..., ak, on a a0 = α1a1+...+αkak avec α1+...+αk = 1.
Mais cela implique que

0 = (α1a1 + ...+ αkak)− (α1 + ...+ αk)a0 = α1(a1 − a0) + ...+ αk(ak − a0)

sans que tous les coefficients soient nuls (car leur somme vaut 1). Cela contredit l’hypothèse que
{a1−a0, ..., ak−a0} est linéairement indépendant, et donc a0 ne peut pas être un tel barycentre.
On répète l’argument pour chacun des ai0 ∈ {a0, ..., ak}.

(1 ⇒ 5) Nous avons déjà montré que l’espace affine engendré ⟨a0, ..., ak⟩ est l’ensemble des
barycentres de ses générateurs. Si jamais on a

k∑
i=0

αiai =
k∑

i=0
βiai avec

k∑
i=0

αi = 1 =
k∑

i=0
βi,

et (supposons) α0 ̸= β0, alors

a0 = 1
α0 − β0

(
−

k∑
i=1

(αi − βi)ai

)
avec −

∑k
i=1(αi − βi)
α0 − β0

= 1

montre que a0 est un barycentre de {a1, ..., ak}, ce qui est en contradiction avec l’hypothèse. On
répète l’argument pour tout αi ̸= βi. Ainsi tout barycentre est unique.

(5 ⇒ 1) Tout élément ai0 ∈ {a0, ..., ak} est le barycentre “trivial” ai0 =
∑k

i=0 αiai avec
αi0 = 1 et tous les autres coefficients nuls. Par hypothèse d’unicité, aucun élément de {a0, ..., ak}
ne peut donc être barycentre des autres éléments. □

Théorème 1.3.3. Soit un espace vectoriel V . Un sous-ensemble A ⊆ V est un sous-espace affine
de dimension k si et seulement s’il existe {a0, ..., ak} ⊆ V affinement libre tel que A = ⟨a0, ..., ak⟩.
On dit alors que {a0, ..., ak} est un repère affine 5 de A.

Démonstration. Une implication a déjà été montré. Réciproquement, si A est un sous-espace
affine de dimension k, alors l’espace vectoriel A0 admet une base {x1, ..., xk}. Fixant un a ∈ A,
on sait donc que tout élément a′ ∈ A = A0 + a s’écrit comme

a′ = (α1x1 + ...+ αkxk) + a = α1(x1 + a) + ...+ αk(xk + a) + (1− (α1 + ...+ αk))a

et c’est bien un barycentre des éléments de l’ensemble {a, x1 + a, ..., xk + a}. Cet ensemble est,
par construction, affinement libre et engendre (affinement) A. □

5. Attention : dans la littérature, ce terme est utilisé dans plusieurs sens différents (mais liés) ; insistons qu’ici
un tel “repère affine” sera utilisé pour déterminer les “coordonnées barycentriques” des points.
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Corollaire 1.3.4. Soit un sous-espace affine A ⊆ V de dimension k. Tout choix de repère affine
{a0, ..., ak} de A détermine, et est déterminé par, une bijection

A {(α0, ..., αk) ∈ Kk+1 | α0 + ...+ αk = 1}

envoyant a ∈ A sur ces coordonnées barycentriques, i.e. l’unique tuple (α0, ..., αk) de somme 1
tel que a = α0a0 + ...+ αkak.

En fixant un repère affine d’un sous-espace affine A ⊆ V , on peut “faire de la géométrie” dans
A sans référer à l’espace vectoriel ambient V : car tout point de A s’exprime de manière unique
comme barycentre des éléments du repère affine choisi. Cela est en particulier vrai pour l’espace
vectoriel V en tant que sous-espace affine de lui-même—c’est à dire, pour V en tant qu’espace
affine. Bien sûr, un même sous-espace affine A ⊆ V peut admettre plusieurs repères affines (et
plus tard on va étudier comment on peut “changer de repère”) : cela donne la liberté de choisir
un repère affine adapté à telle ou autre situation géométrique.

Cependant, une légère généralisation du précédent nous sera utile : pour un nombre fini de
points pondérés et de poids total non-nul,

(a0, α0), ..., (ak, αk) ∈ V ×K avec α0 + ...+ αk ̸= 0 dans K

on peut bien calculer le barycentre

x = α0
α0 + ...+ αk

a0 + ...+ αk

α0 + ...+ αk
ak = 1

α0 + ...+ αk
(α0a0 + ...+ αkak),

qui est donc toujours un élément de ⟨a0, ..., ak⟩. Autrement dit, c’est le barycentre au sens de
la définition donnée auparavent, modulo une “renormalisation” des poids. Avec cette définition
élargie on voit facilement que :

Proposition 1.3.5. Le calcul barycentrique est

1. homogène : multiplier tous les poids d’une famille de points pondérés 6 par un même facteur
ne change pas son barycentre,

2. unitaire : le barycentre d’un seul point pondéré est ce point lui-même,

3. commutative : l’ordre des points pondérés dans une famille de points pondérés est sans
importance pour le calcul de son barycentre,

4. associative : pour calculer le barycentre d’une famille de points pondérés, toute sous-famille
de poids total non-nul peut être remplacée par son barycentre pesé par son poids total.

Par conséquent, étant donné un repère affine {a0, ..., ak} d’un sous-espace affine A ⊆ V , tout
tuple (ξ0, ..., ξk) ∈ Kk+1 de somme non-nulle détermine un barycentre

x = 1
ξ0 + ...+ ξk

(ξ0a0 + ...+ ξkak) ∈ A;

6. Ici, comme plus loin, on veut toujours dire : une suite finie de points pondérés, de poids total non-nul.
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1.4. Quelques résultats géométriques

et un autre tuple (η0, ..., ηk) ∈ Kk+1 de somme non-nulle détermine le même point si et seulement
si

il existe 0 ̸= κ ∈ K : (η0, ..., ηk) = κ · (ξ0, ..., ξk).

Ceci est une relation d’équivalence entre tuples de somme non-nulle, et il convient de noter

(ξ0 : ... : ξk)

lorsqu’on souhaite considérer le tuple (ξ0, ..., ξk) “à multiple non-nul près”. Ainsi on a justifié :

Définition 1.3.6. Soit un repère affine {a0, ..., ak} d’un sous-espace affine A ⊆ V . Lorsqu’un
point x est le barycentre des points pondérés (a0, ξ0), ..., (ak, ξk) de poids total non-nul, on dit
que (ξ0 : ... : ξk) sont les coordonnées homogènes de x ∈ A.

Ci-dessus, l’adjectif “homogène” veut dire “déterminé à multiple non-nul près”. Parfois on parle
de coordonnées barycentriques homogènes, pour insister que le point x est déterminé par un bary-
centre. Pour contraster avec les coordonnées barycentriques homogènes, on parle de coordonnées
barycentriques normalisées lorsqu’on impose que la somme des poids soit égale à 1.

1.4. Quelques résultats géométriques

Jusqu’à présent nous avons fait principalement de l’algèbre linéaire—il est grand temps de
faire de la géométrie affine ! C’est à dire, on souhaite maintenant étudier des configurations de
sous-espaces affines (points, droites, plans, ....) exprimées à l’aide des relations d’incidence et
du parallélisme. Bien sûr on travaille toujours dans un espace vectoriel V ambiant, mais on le
considère plutôt comme espace affine (sous-espace affine de lui-même) : on parlera donc de points,
droites, plans, sans toujours préciser que ce sont des sous-espaces affines de l’espace vectoriel V .

Voici un tout premier exemple pour “confirmer l’intuition” :

Proposition 1.4.1. Chaque droite affine contient au moins deux points distincts, et deux points
distincts déterminent une et une seule droite affine.

Démonstration. Si D ⊆ V est une droite affine, alors sa direction D0 est un sous-espace vectoriel
de dimension 1, et ne peut se réduire au singleton {0}. Ainsi D0 continent au moins deux points
distincts, et par translation (bijective !) il en est de même pour D. La deuxième partie a déjà
été montré. □

De même, “confirmons l’intuition” que deux droites dans un même plan sont parallèles exacte-
ment quand elles n’ont aucun point en commun :

Proposition 1.4.2 (Incidence de deux droites coplanaires). L’intersection de deux droites
affines coplanaires est soit une droite (si les droites sont identiques), soit un point (si les droites
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1. Espaces affines

sont distinctes et non-parallèles), soit vide (si les droites sont distinctes et parallèles).

D = E
D

E

D

E

Démonstration. Supposons queD,E ⊆ A ⊆ V oùD et E sont des droites affines, et A est un plan
affine, dans un espace vectoriel V . Bien sûr D = E implique que D∩E est une droite. Supposons
désormais D ̸= E, alors D ∩ E est soit vide, soit un singleton (car si D et E ont deux points
distincts en commun, alors ces droites sont identiques, puisque deux points distincts déterminent
une et une seule droite affine). Si D // E, alors a ∈ D ∩ E implique D = D0 + a = E0 + a = E,
ce qui contredit l’hypothèse D ̸= E ; ainsi D ∩E = ∅. Si D //\E, alors D0 et E0 sont des droites
vectorielles distinctes dans le plan vectoriel A0, et donc D0 ⊕ E0 = A0.

0
A0

A

D0

E0

D

E

Prenons d ∈ D et e ∈ E, alors d− e ∈ A− e = A0 = D0 ⊕ E0. Il existe donc x ∈ D0 et y ∈ E0

tel que d − e = x + y. Il suit alors que −x + d = y + e ∈ (D0 + d) ∩ (E0 + e) = D ∩ E, d’où
D ∩ E ̸= ∅. □

Ce résultat peut être généralisé à deux hyperplans dans un espace de dimension quelconque, ou
encore à deux sous-espaces affines supplémentaires.

Dans la pratique, une configuration de points (droites, plans, ...) donnés engendre un sous-
espace affine, et on peut souvent utiliser le calcul barycentrique (par rapport aux points donnés,
voire par rapport à un repère affine dudit sous-espace affine) pour étudier la configuration
donnée. Pour en donner le goût, introduisons une notion classique.

Définition 1.4.3. L’isobarycentre (aussi appelé centroïde) des points a1, ..., ak (dans un espace
vectoriel V sur un corps K dans lequel k ̸= 0) est le point x = 1

k (a1 + ...+ ak) ∈ ⟨a1, ..., ak⟩.

L’isobarycentre de deux points distincts a et b est appelé leur milieu, soit m = 1
2(a + b) ; c’est

un élément de la droite ab.

1
2(a+ b)a

b
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1.4. Quelques résultats géométriques

Attention, cette notion n’a pas son sens usuel : nous ne pouvons pas dire que “m est équidistant
à a et b”, faute de notion de distance dans un espace vectoriel quelconque ! Le dessin ci-dessus,
et tous les dessins qui suivent, sont des illustrations dans un plan affine réel (“le plan usuel”) de
résultats qui sont vrais pour n’importe quel corps K.

Un triangle (non-aplati) abc est la donnée de trois points non-alignés (i.e. affinement libres)
a, b et c ; ces points sont les sommets du triangle, et les droites 7 ab, bc et ca sont ses côtés.
Par définition, un triangle “vit” dans le plan affine engendré ⟨a, b, c⟩. Pour faire de la géométrie
affine du triangle, il est souvent commode d’utiliser les sommets du triangle comme repère affine
du plan contenant ce triangle. Illustrons cette idée avec quelques résultats classiques.

Une médiane d’un triangle abc est une droite reliant un sommet du triangle au milieu du
côté opposé. Une telle médiane est donc comprise dans le plan affine ⟨a, b, c⟩. On peut alors se
servir du repère affine {a, b, c} pour démontrer :

Proposition 1.4.4 (Concourance des médianes d’un triangle). Soit un corps K de
car(K) ̸∈ {2, 3}. Les trois médianes d’un triangle s’intersectent à l’isobarycentre.

c

b

a

1
3(a+ b+ c)

1
2(a+ b)

1
2(b+ c)1

2(c+ a)

Démonstration avec barycentres normalisés. On travaille dans le plan affine engendré par les
sommets du triangle abc. En calcul barycentrique, le “milieu” du segment ab est le point m =
1
2(a + b), et la médiane contenant c est donc la droite cm = {α(m − c) + c | α ∈ K}. De la
même manière, on calcule n = 1

2(b + c) et an = {β(n − a) + a | β ∈ K}, et p = 1
2(c + a) et

bp = {γ(p − a) + a | γ ∈ K}. Maintenant on a x ∈ cm ∩ an ∩ bp si et seulement s’il existe
α, β, γ ∈ K tels que 

x = α(m− c) + c = α
2 a+ α

2 b+ (1− α)c
x = β(n− a) + a = (1− β)a+ β

2 b+ β
2 c

x = γ(p− a) + a = γ
2a+ (1− γ)b+ γ

2 c

Par unicité des coordonnées barycentriques on trouve α = β = γ = 2
3 , d’où x = 1

3a+ 1
3b+ 1

3c. □

Par définition, l’isobarycentre du triangle abc est le point de coordonnées homogènes (1 : 1 : 1)
par rapport au repère {a, b, c}. Pour illustrer la différence entre coordonnées barycentriques
normalisées et homogènes, on peut donner une autre démonstration du résultat précédent :

7. On dit bien “droites”, car c’est la seule notion disponible en géométrie affine sur un corps quelconque ; pour
définir la notion de “segment”, il faudrait un corps ordonné (comme p.e. Q ou R).
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Démonstration avec barycentres homogènes. L’isobarycentre g du triangle abc est, par défini-
tion, le barycentre (au sens élargi) de (a, 1), (b, 1), (c, 1). Mais si on note m le barycentre
de (a, 1), (b, 1), alors par associativité du calcul barycentrique, g est aussi le barycentre de
(m, 2), (c, 1), ce qui montre que g ∈ mc, où mc est la médiane reliant le sommet c au mi-
lieu m du segment ab. De la même manière on voit que g appartient aux deux autres médianes
du triangle abc. L’isobarycentre est donc bien le point d’intersection des trois médianes. □

Par ailleurs, l’écriture en coordonnées barycentriques montre également que, si g est l’isobary-
centre du triangle abc et m est le milieu du segment ab, alors g = 2

3m+ 1
3c. Dans un plan affine

réel (donc K = R), cela veut dire que g se trouve “à deux tiers des sommets, et à un tiers des
milieux des côtés”.

Pour se convaincre de la nécessité des conditions sur le corps K, outre le fait que l’expression
de l’isobarycentre n’a pas de sens quand car(K) = 3, on peut facilement vérifier que le triangle
de sommets (0, 0), (2, 0) et (0, 2) dans F3 × F3 a ses trois médianes parallèles.

Le résultat suivant était connu par Menelaos 8 d’Alexandrie (env. 70–140), qui l’a formulé et
démontré dans le cadre de la géométrie d’Euclide. Il y a beaucoup de démonstrations différentes ;
nous alons en donner une ici (en termes de barycentres), et une autre plus tard (en termes de
dilatations).

Proposition 1.4.5 (Théorème de Menelaos). Soit un triangle abc, et x ∈ bc, y ∈ ca et
z ∈ ab trois points distincts des sommets du triangle. Ecrivons, en coordonnées barycentriques,

x = αxb+ βxc y = αyc+ βya z = αza+ βzb.

Alors les points x, y et z sont aligniés si et seulement si αxαyαz = −βxβyβz.

y

c

a b z

x

a b

c

z

x
y

Pour démontrer facilement ce résultat, développons d’abord un critère analytique (en termes de
coordonnées barycentriques) de colinéarité de trois points dans un plan affine :

Lemme 1.4.6. Soit un repère affine {a, b, c} d’un sous-plan affine A ⊆ V , et trois points
x, y, z ∈ A avec x ̸= y. Notons en coordonnées barycentriques normalisées

x = αxa+ βxb+ γxc y = αya+ βyb+ γyc z = αza+ βzb+ γzc.

Alors z ∈ xy si et seulement si

det


αx αy αz

βx βy βz

γx γy γz

 = 0.

8. En grec : “Μενέλαος” ; en français on écrit souvent “Ménélaüs”.
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Démonstration. Puisque x ̸= y, on a z ∈ xy si et seulement si

il existe κ : z = (1− κ)x+ κy.

Dans ce barycentre, on peut remplacer x, y et z par leurs expressions barycentriques, et la
condition devient équivalente à

αza+ βzb+ γzc = (1− κ)(αxa+ βxb+ γxc) + κ(αya+ βyb+ γyc)

= ((1− κ)αx + καy)a+ ((1− κ)βx + κβy)b+ ((1− κ)γx + κγy)c.

Par unicité des coordonnées barycentriques, on peut écrire cela encore par un système d’équa-
tions : 

αz = (1− κ)αx + καy

βz = (1− κ)βx + κβy

γz = (1− κ)γx + κγy

Maintenant, si un tel κ ∈ K existe, alors la dépendence des colonnes exprimée par le système
ci-dessus implique que

det


αx αy αz

βx βy βz

γx γy γz

 = 0.

Réciproquement, ce déterminant est nul si et seulement si les colonnes de la matrice sont dé-
pendantes (au sens linéaire !), c’est à dire,

il existe (σ, ρ, θ) ̸= (0, 0, 0) : σ


αx

βx

γx

+ ρ


αy

βy

γy

+ θ


αz

βz

γz

 =


0
0
0

 .
Chaque colonne étant de somme 1 (car les éléments sont des coordonnées barycentriques), on
obtient par sommation des trois équations

σαx + ραy + θαz = 0
σβx + ρβy + θβz = 0
σγx + ργy + θγz = 0

que σ + ρ+ θ = 0. Si θ = 0 alors

il existe (σ, ρ) ̸= (0, 0) : σ


αx

βx

γx

+ ρ


αy

βy

γy

 =


0
0
0

 .
Mais alors σ + ρ = 0, et donc σ = −ρ ̸= 0, d’où x = y. Ceci contredit l’hypothèse de l’énoncé,
et donc on a toujours θ ̸= 0. Mais alors

αz

βz

γz

 = −σ
θ


αx

βx

γx

+ −ρ
θ


αy

βy

γy

 avec −σ
θ

+ −ρ
θ

= −σ + ρ

θ
= −−θ

θ
= 1

montre que κ = −ρ
θ est une solution au système exprimant que z = (1− κ)x+ κy. □
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Démonstration du Théorème de Menelaos. Par le lemme, les points

x = αxb+ βxc y = αyc+ βya z = αza+ βzb

sont alignés si et seulement si

det


0 βy αz

αx 0 βz

βx αy 0

 = 0,

et par calcul de ce déterminant on trouve la condition nécessaire et suffisante de l’énoncé. □

La caractérisation de l’alignement des points x, y et z par un déterminant (cf. le lemme ci-dessus)
reste valable si on remplace les coordonnées barycentriques (normalisées) par des coordonnées
homogènes : puisque la nullité du déterminant n’est pas affectée lorsqu’on multiplie ses colonnes
par des constantes. Ainsi on peut aussi reformuler le Théorème de Menelaos en utilisant des
coordonnées homogènes pour x, y et z.

Aussi le résultat suivant est un “grand classique” : il porte le nom du mathématicien italien
Giovanni Ceva (1647–1734), qui l’a formulé et démontré dans le cadre de la géométrie d’Euclide,
bien que ce résultat figure déjà dans les travaux de Yusuf Al-Mutaman (...–1085), mathématicien
et roi de la taïfa de Saragosse (en Espagne) à la fin du 11e siècle. Nous allons donner une
démonstration barycentrique de l’énoncé, le validant ainsi plus généralement en géométrie affine.

Proposition 1.4.7 (Théorème de Ceva). Soit un triangle abc, et x ∈ bc, y ∈ ca et z ∈ ab
trois points distincts des sommets du triangle. Ecrivons, en coordonnées barycentriques,

x = αxb+ βxc y = αyc+ βya z = αza+ βzb.

Alors les droites ax, by, cz sont concourantes ou parallèles si et seulement si αxαyαz = βxβyβz.

z
b

p

a

y

c

x
a

b

c

y

p
x

z

a

b
z

c

x
y

Dans cet énoncé, on a affaire à des droites passant par un sommet d’un triangle donné : on
appelle cela une droite cévienne (ou tout simplement une cévienne) du triangle. Les médianes
d’un triangle sont des céviennes, mais aussi p.e. les bissectrices ou les hauteurs du triangle (dans
le cadre de la géométrie d’Euclide, bien entendu). Pour la suite il est utile de démontrer d’abord :
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Lemme 1.4.8. Soit un triangle abc et un point a ̸= p ∈ ⟨a, b, c⟩ de coordonnées homogènes
(α : β : γ) par rapport au repère affine {a, b, c}. Alors la cévienne ap est parallèle au côté opposé
bc si et seulement si β + γ = 0 ; et si les droites ne sont pas parallèles, alors leur (unique) point
d’intersection x ∈ ap ∩ bc est de coordonnées homogènes (0 : β : γ).

b
c

p

a

b
c

p

x

a

b
c

p
x

a

Démonstration. Dans le plan affine A = ⟨a, b, c⟩, les droites ap et bc sont distinctes (car a ̸∈ bc),
donc elles sont non-parallèles si et seulement si elles ont exactement un point d’intersection.
Mais un point x de coordonnées homogènes (α′ : β′ : γ′) est à la fois sur ap et sur bc si et
seulement si

det


1 α α′

0 β β′

0 γ γ′

 = 0 et det


0 0 α′

1 0 β′

0 1 γ′

 = 0,

c’est à dire, quand
βγ′ − γβ′ = 0 et α′ = 0.

Puisque a ̸= p, on a nécessairement (β, γ) ̸= (0, 0) (car le point de coordonnées homogènes
(α : 0 : 0) est exactement a). Supposons que β ̸= 0, alors γ′ = γ

ββ
′ et on a ainsi

(α′ : β′ : γ′) = (0 : β′ : γ
β
β′) = (0 : β : γ).

Si β = 0 alors γ ̸= 0 et on utilise β′ = β
γ γ

′ pour obtenir le même résultat. Mais il s’agit ici de
coordonnées homogènes (du point x) si et seulement si la somme des coordonnées est non-nulle,
soit β + γ ̸= 0. Par contraposée on a donc ap // bc si et seulement si β + γ = 0. □

Démonstration du Théorème de Ceva. Remarquons d’abord que αx, αy, αz, βx, βy et βz sont
tous non-nuls, car par hypothèse x, y et z sont distincts de a, b et c. Dans la suite, on pourra
donc diviser par ces α’s et β’s.

Si les droites ax, by et cz s’intersectent en un point p, que l’on suppose de coordonnées
homogènes (α : β : γ) dans le repère {a, b, c}, alors par le lemme on a

(0 : αx : βx) = (0 : β : γ) (βy : 0 : αy) = (α : 0 : γ) (αz : βz : 0) = (α : β : 0)

et donc
αx

βx
· αy

βy
· αz

βz
= β

γ
· γ
α
· α
β

= 1

ce qui implique bien sûr que αxαyαz = βxβyβz.
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Supposons maintenant que les droites ax, by et cz sont parallèles. Pour invoquer le lemme
ci-dessus, on va “couper le problème en deux” (et l’argument dévelopé ci-après ne dépend pas
du “découpage” choisi !) :

a bz

c

x

y

=

a z

c

x

+

bz

c

y

Ainsi on peut voir ax comme une cévienne du triangle azc, parallèle au côté zc ; et by est une
cévienne du triangle bzc, parallèle au côté zc. Pour utiliser le lemme ci-dessus, on doit exprimer
x comme barycentre du repère {a, z, c}, et y comme barycentre du repère {b, c, z}. Mais de
z = αza + βzb on obtient b = −αz

βz
a + 1

βz
z et donc x = −αxαz

βz
a + αx

βz
z + βxc (et la somme des

coefficients vaut 1). Le lemme dit qu’alors ax//zc si et seulement si αx
βz

+βx = 0, soit βxβz = −αx.
De même, z = αza+ βzb implique a = 1

αz
z − βz

αz
b, d’où y = −βyβz

αz
b+ βy

αz
z + αyc. Le lemme dit

que by // cz si et seulement si βy = −αyαz. Il suit par multiplication que αxαyαz = βxβyβz.
Réciproquement, si les trois droites ax, by et cz ne sont pas parallèles, alors au moins deux

d’entre elles s’intersectent (en un unique point). Supposons que p, dont on note les coordonnées
homogènes dans le repère {a, b, c} par (α : β : γ), est le point d’intersection de ax et by, alors x
est le point d’intersection de ap et bc, et y est le point d’intersection de by et ac, donc le lemme
précédent dit que

(0 : αx : βx) = (0 : β : γ) et (βy : 0 : αy) = (α : 0 : γ),

c’est à dire,
αx

βx
= β

γ
et αy

βy
= γ

α
.

Par la condition du théorème, αxαyαz = βxβyβz, on trouve alors que

αz

βz
= βxβy

αxαy
= α

β

et donc les coordonnées homogènes de z sont

(αz : βz : 0) = (βxβy : αxαy : 0) = (α : β : 0).

Mais cela dit (encore par le lemme) que z est aussi le point d’intersection de cp et ab ; ainsi les
trois droites ax, by et cz sont bel et bien concourantes en p. Somme toute, sous la condition
αxαyαz = βxβyβz, les droites ax, by et cz sont soit parallèles, soit concourantes (en un seul
point). □

17



1.5. Exercices

Par ailleurs, dans le cas de concourance des céviennes, les coordonnées homogènes du point
d’intersection p sont bien (avec les notations de la démonstration)

(α : β : γ) = (α
γ

: β
γ

: 1) = (βy

αy
: αx

βx
: 1) = (βxβy : αxαy : αyβx).

(Ici on a utilisé que γ ̸= 0 ; le contraire impliquerait que x = b, ce qui est interdit par les
hypothèses.) Clairement, l’existence de l’unique point d’intersection des trois médianes d’un
triangle abc (lorsque car(K) ̸∈ {2, 3}) est un cas particulier du Théorème de Ceva : il suffit de
prendre pour x, y et z les milieux des segments bc, ca et ab.

Pour terminer, encore un dernier commentaire. Les théorèmes de Menelaos et de Ceva se
ressemblent : Menelaos dit quand trois points se trouvent sur une même droite, alors que Ceva
dit quand trois droites se rencontrent en un même point. Et oui, les théorèmes de Menelaos
et de Ceva sont des conséquences d’un résultat plus général—voir [M. S. Klamkin, A. Liu,
Simultaneous Generalization of the Theorems of Ceva and Menelaus, Mathematics Magazine,
Vol. 65 (February 1992), pp. 48–52]. Mieux encore, reformulé en géométrie projective, ces deux
théorèmes sont duaux l’un de l’autre ; et donc l’un implique l’autre, et vice versa—voir [J. R.
Silvester, Ceva = (Menelaus)2, The Mathematical Gazette, Vol. 84 (July 2000), pp. 268–271].

1.5. Exercices

Exercice 1.5.1 (Image directe et image réciproque). Montrer que, pour toute fonction
f : X → Y , l’image directe preserve les réunions quelconques ; et si f est injective alors l’image
directe preserve aussi les intersections quelconques. Qu’en est-il alors pour l’image directe, resp.
l’image réciproque, d’une bijection ? (Ceci est utile pour les translations, et plus généralement
pour les automorphismes affines.)

Exercice 1.5.2 (Bijections). Montrer que, pour tout ensemble X, l’ensemble des bijections
Bij(X) est un groupe (pour la composition). Montrer que ce groupe agit “naturellement” sur
l’ensemble X, c’est à dire, que l’application Bij(X) × X → X : (f, x) 7→ fx a les “propriétés
usuelles”.

Exercice 1.5.3 (Actions de groupe—abstraction du précédent). Rappeler la notion
d’action d’un groupe sur un ensemble (montrer l’équivalence de G ×X → X et G → Bij(X)).
Etudier des propriétés (action fidèle, libre, transitive ; orbit, point fixe, stabilisateur) et donner
des exemples simples.

Exercice 1.5.4 (Sous-groupes, quotients). Rappeler sous-groupe (normal) et quotient d’un
groupe G ; rappeler comment cela s’écrit dans une suite exacte courte N // //G // //Q. Donner
des exemples (sous-groupes de Bij(X), quotients de Z, ...) (On rencontrera plein d’exemples de
suites exactes courtes de groupes dans le cours.)

Exercice 1.5.5 (Morphismes entre actions). Etant donné une action de groupe G×X → X,
montrer qu’un sous-groupe H ⊆ G induit toujours une action H × X → X, mais qu’un sous-
ensemble Y ⊆ X ne détermine pas toujours une action G×Y → Y . Formuler des conditions sur
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Y pour que l’inclusion i : Y ↪→ X induise une action G×Y → Y . Rappeler la “bonne définition”
de morphisme équivariant entre G-actions.

Exercice 1.5.6 (Corps). Rappeler les notations des corps “usuels” : Q, R, C, Fp = Z/(p), Fpr .
(Ce dernier n’a probablement pas encore été défini dans les cours d’algèbre ; ici on peut juste
mentionner son existence.)

Exercice 1.5.7 (Espaces vectoriels et applications linéaires). Soit V un espace vectoriel
sur un corps K. Rappeler : base et dimension de V , sous-espace de V , intersection de sous-
espaces, somme (directe) de sous-espaces, formule de Grassmann. Application linéaire entre
espaces vectoriels, noyau, image, théorème du rang. Rappeler que toute base {e1, ..., en} de V
détermine, et est déterminée par, un isomorphisme linéaire V → Kn ; rappeler la représentation
matricielle d’une application linéaire. (Tout cela est vu dans les cours de L1 et L2.)

Exercice 1.5.8 (Solutions d’une équation matricielle homogène). Pour une matrice
A ∈ Km×n (avec éléments dans un corps K), montrer que l’ensemble {X ∈ Kn×1 | AX = O}
est un sous-espace vectoriel de Kn×1. Quelle est sa dimension ?

Exercice 1.5.9 (Equations cartésiennes d’un sous-espace vectoriel). Soit V un espace
vectoriel sur un corps K, muni d’une base {e1, ..., en}. Montrer que tout sous-espace vectoriel
de dimension k ≤ n est l’ensemble des x =

∑
i xiei dont les coordonnées sont les solutions d’un

système linéaire homogène 
a11x1 + ...+ a1nxn = 0
...
a(n−k)1x1 + ...+ a(n−k)nxn = 0

dont la matrice de coefficients est de rang n− k.

Exercice 1.5.10 (Somme de Minkowski). Pour deux sous-ensembles A,B ⊆ V d’un espace
vectoriel, on définit leur somme de Minkowski par A + B = {a + b | a ∈ A, b ∈ B}. Montrer
que (P(V ),+, {0}) est un monoïde commutatif. A-t-on A+ (B ∪C) = (A ∪B) + (A ∪C) et/ou
A+ (B ∩ C) = (A ∩ B) + (A ∩ C) pour tout A,B,C ⊆ V ? (La translation d’un sous-ensemble
de V par un vecteur a ∈ V est un cas particulier de cette somme.)

Exercice 1.5.11 (Vectoriel parmi affine). Montrer qu’un sous-espace vectoriel de V est
exactement un sous-espace affine passant par 0.

Exercice 1.5.12 (Parallélisme est une relation d’équivalence). Soit un espace vectorielle
V . Notons Aff(V ) pour l’ensemble des sous-espaces affines de V , et Vec(V ) pour l’ensemble
des sous-espaces vectoriels. Montrer que l’application Aff(V )→ Vec(V ) : A 7→ A0 est surjective
mais pas injective, puis montrer que la relation d’équivalence qu’elle détermine est exactement
le parallélisme. (Rappeler que toute surjection (ensembliste) détermine, et est déterminée par,
une relation d’équivalence.)
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Exercice 1.5.13 (Actions des translations). Soit un espace vectorielle V de dimension n.
Notons Affk(V ) pour l’ensemble des sous-espaces affines de dimension k ≤ n. Montrer que,
pour toute translation t ∈ T (V ), l’image directe définit une bijection t : Affk(V )→ Affk(V ). En
déduire une action de groupe T (V )×Affk(V )→ Affk(V ). Cette action, est-elle transitive ? libre ?
(La réponse dépend de k.) Quelle est la relation d’équivalence sur Affk(V ) déterminée par cette
action de T (V ) ? Mêmes questions lorsqu’on remplace Affk(V ) par Aff(V ).

Exercice 1.5.14 (Définition d’espace affine par action). Soit un espace vectoriel V . Mon-
trer que le groupe T (V ) = (V,+, 0) agit “naturellement” simplement transitivement sur (l’en-
semble des points de) V . Réciproquement, lorsque (V,+, 0) agit simplement transitivement sur
un ensemble X, montrer que X est, par transport de structure, un espace vectoriel isomorphe
à V (et que l’on peut choisir n’importe quel x ∈ X comme vecteur nul). De plus, cet isomor-
phisme est équivariant pour les actions respectifs. (Plusieurs références (françaises) utilisent
cette équivalence pour définir ainsi un “espace affine X de direction V ”.)

Exercice 1.5.15 (Solutions d’une équation matricielle non-homogène). Pour des ma-
trices A ∈ Km×n et B ∈ Km×1 (avec éléments dans un corps K), montrer que l’ensemble
{X ∈ Kn×1 | AX = B} est soit vide, soit un sous-espace affine de Kn×1. Le cas échéant, donner
sa direction ainsi qu’un point de passage, et sa dimension.

Exercice 1.5.16 (Equations cartésiennes d’un sous-espace affine). Soit V un espace
vectoriel sur un corps K, muni d’une base {e1, ..., en}. Montrer que tout sous-espace affine de
dimension k ≤ n est l’ensemble des x =

∑
i xiei dont les coordonnées sont les solutions d’un

système linéaire (pas nécessairement homogène)
a11x1 + ...+ a1nxn = b1
...
a(n−k)1x1 + ...+ a(n−k)nxn = bn−k

dont la matrice de coefficients est de rang n− k.

Exercice 1.5.17 (Sous-espaces affines—le cas réel). Identifier (par une équation carté-
sienne) les sous-espaces affines de Rn lorsque n ∈ {0, 1, 2, 3}. (Pour R2 on retrouve bien sûr les
équations des droites données dans le cours de Géométrie en L2.)

Exercice 1.5.18 (Espaces finis). “Dessiner” les espaces F2
2, F2

3, F2
5, et indiquer toutes les

droites (vectorielles et affines). Combien de points y a-t-il dans Fn
q ? Combien de points y a-t-il

sur chaque droite dans Fn
q ? Combien de droites y a-t-il dans Fn

q ?

Solution. Une sous-droite vectorielle de Fn
q est (isomorphe à) Fq (car c’est un espace vectoriel de

dimension 1), et elle contient donc q éléments. Puisqu’une droite affine est définie par translation,
et une translation est bijective, aussi chaque droite affine contient exactement q éléments. Une
droite (affine) est déterminée par deux points distincts ; et cette même droite est alors déterminée
par chaque paire de points distincts contenus dans cette droite. Donc, pour compter les droites
dans Fn

q , on compte d’abord le nombre de paires de points distincts dans cet espace, soit qn ·
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(qn−1) ; puis le nombre de paires de points distincts d’une droite„ soit q · (q−1) ; pour conclure
que le nombre de droites affines distinctes dans Fn

q est qn·(qn−1)
q·(q−1) = qn−1(qn−1 + ...+ q + 1). □

Exercice 1.5.19 (Equations paramétriques et équations cartésiennes). Parmi les en-
sembles ci-dessous, déterminer les (sous-)espaces affines : le cas échéant, donner une présentation
paramétrique ainsi que des équations cartésiennes (par rapport à la base canonique de l’espace
enveloppant), puis indiquer sa direction et un point de passage (et en déduire sa dimension).

1. {(x, y) ∈ R2 | x+ y = 2}
2. {(x, y) ∈ R2 | 2x− 7y = 0 = 5x+ 3y}
3. {(x, y) ∈ R2 | x2 + y2 = 1}
4. {(x, y, z) ∈ R3 | z − x+ 2y = 0 ou 3x+ 3y = 3}
5. {(x, y, z, t) ∈ R4 | x = 2y = 3z + t− 1}
6. {(x, y, z) ∈ R3 | 9x− y + 7z = −1}
7. {(x, y, z) ∈ R3 | −x+ 5y + z = 1 et 2x− z = 4 et x+ 5y = 5}
8. D = R(1, 2, 3) + (4, 5, 6)
9. P = R(1, 1, 0) + R(−1, 0, 1) + (2, 2, 4)

10. {P ∈ R≤3[X] | P (0) = P (1)}
11. {P ∈ R≤3[X] | P ′(1) = 0}
12. {M ∈ R2×2 | tr(M) = 1}
13. {M ∈ R2×2 | det(M) = 0}
14. {M ∈ R2×2 |M est diagonale}

Exercice 1.5.20 (Equations cartésiennes et intersections). Dans R3, donner une présen-
tation paramétrique ainsi que des équations cartésiennes des sous-espaces affines suivants (par
rapport à la base canonique) :

1. la droite D passant par les points (0, 1, 1) et (−1, 2, 2),
2. le plan P1 passant par le point (0,−3, 1) et parallèle au plan d’équation 3x− y + 5z = 7,
3. le plan P2 contenant le point (−2, 7, 0) et la droite R(6,−5, 1) + (0, 1, 2).

Déterminer ensuite les intersections D ∩ P1, D ∩ P2, P1 ∩ P2 et D ∩ P1 ∩ P2.

Exercice 1.5.21 (Intersections de sous-espaces affines). On considère les sous-espaces
affines suivants de R3 :

A = R(2, 3,−2) + (1, 0, 0) B :
(

1 6 −2
1 3 −3

)
x

y

z

 =
(

2
1

)

C = R(1, 1, 1) + R(2, 0,−2) + (5, 2, 1) D : 2x+ 3y − 2z = 6.

Déterminer les intersections A ∩B, A ∩C, A ∩D, etc. Y a-t-il dans cette liste des sous-espaces
affines supplémentaires ?

Exercice 1.5.22 (Théorème du toit). Dans un espace affine de dimension 3, montrer que si
deux plans affines non-parallèles P1 et P2 contiennent respectivement deux droites parallèles D1

21



1.5. Exercices

et D2, alors l’intersection D3 = P1 ∩ P2 est un droite affine parallèle à D1 et à D2.

D1 D2

D3

Exercice 1.5.23 (Déterminer un plan). Dans un espace affine quelconque, montrer que deux
droites affines distinctes parallèles ou sécantes sont contenues dans un et un seul plan affine. Et
si ces droites ne sont ni parallèles, ni sécantes ?

Exercice 1.5.24 (Théorème du toit—application). Dans R3, on considère un tétraèdre
abcd ainsi que des points sur ces côtés, notés x, y et z, tels que yz // bc, {m} = xy ∩ ab et
{n} = xz ∩ ac :

d

b

ca

y
z

x

n

m

Montrer que bc // mn.

Exercice 1.5.25 (Théorème du toit—généralisation). Dans un espace affine de dimension
3, soient P1, P2 et P3 trois plans deux à deux non-parallèles. Montrer que les droites d’intersec-
tions D1 = P2 ∩ P3, D2 = P3 ∩ P1 et D3 = P1 ∩ P2 sont parallèles ou concourantes.

Exercice 1.5.26 (Barycentres et translations). Soit un espace vectoriel V . Montrer qu’une
combinaison linéaire b = α0a0 + ... + αkak dans V est un barycentre (donc α0 + ... + αk = 1)
si et seulement si, pour tout t ∈ T (V ), on a tb = α0ta0 + ... + αktak. Autrement dit, une
combinaison barycentrique (= affine) est exactement une combinaison linéaire préservée par
toutes les translations.

Exercice 1.5.27 (Fonction de Leibniz). Soit un espace vectoriel V . Etant donné des points
{a0, ..., ak} ⊆ V et des scalaires {α0, ..., αk} ⊆ K, on définit la fonction

L : V → V : x 7→
∑

i

αi(ai − x).

Montrer que cette fonction est constante si
∑

i αi = 0, et bijective si
∑

i αi ̸= 0. Dans ce deuxième
cas, identifier l’image réciproque de 0.
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Exercice 1.5.28 (Coordonnées barycentriques et coordonnées cartésiennes). Soit un
repère affine {a0, ..., ak} d’un sous-espace affine A ⊆ V ; ainsi {a1 − a0, ..., ak − a0} est une base
du sous-espace vectoriel A0 ⊆ V . Tout point x ∈ A s’écrit donc comme un barycentre

x = α0a+ ...+ αkak avec α0 + ...+ αk = 1,

et le vecteur x− a0 ∈ A0 s’écrit comme une combinaison linéaire

x− a0 = α′
1(a1 − a0) + ...+ α′

k(ak − a0).

Montrer comment ces coordonées barycentriques et cartésiennes se déterminent mutuellement.

Exercice 1.5.29 (Barycentres—sur une droite dans le plan réel). Soit une droite affine
ab passant par deux points distincts a et b du plan R2, que l’on considère avec sa géométrie
euclidienne vue en L2. Tout point de la droite s’écrit donc par un barycentre x = αa + βb, et
on veut calculer ses poids α et β. Pour cela, considérons d’abord un point x situé entre a et b,
puis les triangles formés à l’aide de l’origine o (que l’on suppose en dehors de la droite ab) et
des segments parallèles :

o

a

b
x

Utiliser le Théorème de Thales pour montrer qu’alors

α = distance bx
distance ab et β = distance ax

distance ab
Modifier l’argument pour décrire tous les points de ab, en introduisant des distances signées. (Ce
résultat est en fait valable dans tout espace euclidien.)

Exercice 1.5.30 (Barycentres—origine physique). En physique classique, d’après les tra-
vaux d’Archimedes (Αρχιμήδης) de Syracuse (qui vivait donc à Syracuse, sur la côte dans le
sud-est de la Sicile, de −287 à −212), la loi du levier dit que

F1l1 = F2l2,

où Fi est une force et li est une longueur de bras de levier. On peut par exemple penser à
deux poids (poids = force de pesanteur exercée sur une masse) en équilibre sur une balance
“asymétrique” :

F1

F2

l1 l2
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Montrer que la position du pivot du levier est le barycentre des extrémités du levier, dont les
coefficients sont les poids. (Ceci est effectivement l’origine historique du calcul barycentrique ;
βαρυς se traduit par “poids”.)

Exercice 1.5.31 (Associativité du calcul barycentrique). Soit un triangle abc dans un
plan affine. Pour situer le point p de coordonnées homogènes (α : β : γ), montrer comment on
peut le faire “en deux étapes”, comme suggéré par le dessin suivant,

a b

c

m

p

où m est le barycentre de (a, α), (b, β) et p est le barycentre de (m,α + β), (c, γ). (Que faire si
α+ β = 0 ?)

Exercice 1.5.32 (Barycentres—dans le plan réel). Soit un triangle non-aplati abc dans le
plan R2, que l’on considère avec sa géométrie euclidienne vue en L2. Tout point x ∈ R2 s’écrit
alors de manière unique comme un barycentre x = αa + βb + γc, et on veut déterminer les
coefficients α, β et γ. Considérer d’abord un point x à l’intérieur du triangle abc, et montrer que
tout point de la droite parallèle à ab et passant par x à le même coefficient γ :

a b

x

x′

c

a b

x

x′

d

d′

c

(Indication : exprimer x comme barycentre de c et x′ puis utiliser le Théorème de Thales.) En
abaissant une droite perpendiculaire de c sur ab, en déduire que

γ = aire abd
aire abc = aire abx

aire abc ,

puis conclure “en répétant l’argument” par

α = aire xbc
aire abc β = aire axc

aire abc γ = aire abx
aire abc .

Généraliser pour un point quelconque du plan, avec des coordonnées barycentriques éventuel-
lement négatives, en introduisant la notion d’aire signée d’un triangle. (Ce résultat est en fait
valable dans tout espace euclidien.)
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Exercice 1.5.33 (Barycentres—dans le plan réel (2)). Dans R2 (que l’on considère avec sa
géométrie euclidienne vue en L2), montrer que les coordonnées homogènes (α : β : γ) d’un point
x à l’intérieur d’un triangle équilatéral abc sont données par les longueurs indiquées ci-dessous :

a b

c

x

β

γ

α

Exercice 1.5.34 (Barycentres—dans le plan réel (3)). Dans R2 (que l’on considère avec
sa géométrie euclidienne vue en L2), montrer que l’aire signée du parallélogramme ci-dessous
est donnée par det

(
a1 b1
a2 b2

)
:

Y

X

b2

b1

a2

a1

En déduire une formule pour l’aire signée d’un triangle quelconque abc dans R2, de sommets
a = (a1, a2), b = (b1, b2) et c = (c1, c2). Conclure que, par rapport à ce triangle abc, tout
x = (x1, x2) ∈ R2 a pour coordonnées homogènes

(
det

(
b1 − x1 c1 − x1

b2 − x2 c2 − x2

)
: det

(
c1 − x1 a1 − x1

c2 − x2 a2 − x2

)
: det

(
a1 − x1 b1 − x1

a2 − x2 b2 − x2

))
,

ou, de manière équivalente,

(
det


x1 b1 c1

x2 b2 c2

1 1 1

 : det


a1 x1 c1

a2 x2 c2

1 1 1

 : det


a1 b1 x1

a2 b2 x2

1 1 1

).
Formuler un critère (par un calcul de déterminants) pour vérifier si un point x ∈ R2 est inclus ou
non dans un triangle abc de sommets donnés. (Ceci a d’importantes applications en robotique
(par exemple, pour positionner un robot dans l’espace), en graphisme informatique (images de
synthèse, rendu de surfaces), etc.)

Exercice 1.5.35 (Famille affinement libre). Pour les ensembles de points suivants, dire s’ils
sont affinement libres et déterminer le sous-espace affine engendré :

1. {(3, 1), (1, 3)} ⊆ R2
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2. {(3, 1), (1, 3), (0, 8)} ⊆ R2

3. {(0, 0), (3, 1), (1, 3)} ⊆ R2

4. {(5, 5, 3), (1, 4, 7), (2,−5, 2)} ⊆ R3

5. {(1, 2, 2), (6, 7, 1), (−11,−7, 4)} ⊆ R3

6. {(2, 3, 5), (4, 1, 6), (2, 8, 4), (4, 6, 5)} ⊆ R3

Exercice 1.5.36 (Repère affine). Donner un repère affine pour les sous-espace affines sui-
vants :

1. {(x, y) ∈ R2 | x+ y = 2}
2. {(x, y, z) ∈ R3 | 9x− y + 7z = −1}
3. {(x, y, z) ∈ R3 | −x+ 5y + z = 1 et 2x− z = 4}
4. D = R(1, 2, 3) + (4, 5, 6)
5. P = R(1, 1, 0) + R(−1, 0, 1) + (2, 2, 4)
6. {M ∈ R2×2 | tr(M) = 1}

Exercice 1.5.37 (Coordonnées barycentriques dans R2). Etant donné trois points dis-
tincts et non-alignés a, b et c dans R2, placer les (ensembles de) points suivants :

1. d = 1
3a+ 2

3b

2. e = 2a− b
3. f = 0a+ b

4. {x = αa+ βb | α+ β = 1, α > 1}
5. g = 1

6a+ 1
6b+ 2

3c

6. h = −1
2a+ 5

2b− c
7. i = 2a+ b− 2c
8. {x = αa+ βb+ γc | α+ β + γ = 1, α+ β > 1}

Exercice 1.5.38 (Repère affine de R2). Donner les coordonnées barycentriques d’un point
(x, y) ∈ R2 dans les repères affines suivants :

1. {(0, 0), (1, 0), (0, 1)}
2. {(−1, 1), (1, 0), (0, 1)}
3. {(1, 4), (−2, 2), (−5, 0)}

Exercice 1.5.39 (Repère affine de R3). Pour chacun des points a = (0, 0, 0), b = (3, 9, 2)
et c = (2, 1

4 , 2) de R3, dire s’il est dans le sous-espace affine ⟨(2, 3, 1), (3, 4, 6), (0,−4,−5)⟩, et
donner alors ses coordonnées barycentriques.

Exercice 1.5.40 (Centre du cercle inscrit dans un triangle réel). Pour un triangle non-
aplati abc dans R2 (que l’on considère avec sa géométrie euclidienne vue en L2), exprimer le
centre de son cercle inscrit comme un barycentre des sommets.

26



1. Espaces affines

Exercice 1.5.41 (Entre deux droites). On considère deux droites sécantes dans un plan
affine sur un corps K tel que car(K) ̸= 2. Montrer que tout point en dehors de ces deux droites
est le milieu de deux points se trouvant sur l’une des deux droites.

x

x1

x2

Si on travaille dans le plan R2 (avec sa géométrie euclidienne vue en L2), comment peut-on
construire avec règle et compas ces deux points ?

Exercice 1.5.42 (Isobarycentre). Soit un triangle non-aplati abc dans un plan affine sur un
corps K tel que car(K) ̸∈ {2, 3}. Montrer que l’isobarycentre de abc est également l’isobary-
centre du triangle dont les sommets sont les milieux des côtés de abc. Généraliser cet énoncé en
remplaçant “milieu des côtés” par une expression barycentrique adéquate.

Exercice 1.5.43 (Centroïde d’un quadrilatère). Soit un quadrilatère abcd dans un plan
affine sur un corps K de car(K) ̸= 2.

a b

c

d

g = 1
4(a+ b+ c+ d)

a b

g

c

d

a b

g

c

d

Montrer qu’un point g est l’isobarycentre des quatre sommets si et seulement si g est le point
d’intersection des segments joignants les milieux de côtés opposés (les bimédianes du quadrila-
tère), si et seulement si g est le milieu du segment reliant les milieux des diagonales.

Exercice 1.5.44 (Centroïde d’un tétraèdre). Soit un tétraèdre abcd dans un espace affine de
dimension 3 sur un corps K de car(K) ̸∈ {2, 3}. Montrer que l’isobarycentre des quatre sommets
est le point d’intersection des 4 droites reliant un sommet au centroïde de la face opposée, ainsi
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que des trois bimédianes (= droites joignants deux milieux de côtés opposés).

b

d

a

c

Exercice 1.5.45 (Menelaos—application). Pour un triangle abc dans un plan affine, on
suppose que deux points x ∈ bc et y ∈ ac sont donnés par leurs coordonnées homogènes. Utiliser
le Théorème de Menelaos pour calculer les coordonnées homogènes de l’unique z ∈ ab ∩ xy.

b z
a

c

y
x

Exercice 1.5.46 (Parallélogramme). Soient quatre points a, b, c et d distincts et non-
colinéaires dans un espace affine. Montrer que les conditions suivantes sont équivalentes :

1. ad // bc et ab // cd,

2. a est de coordonnées homogènes (1 : −1 : 1) dans le repère {b, c, d},

3. a− d = b− c

4. a− b = d− c,

5. si car(K) ̸= 2 : ac et bd se coupent en leur milieu.

a

b

c

d

m

Bien sûr, on appelle un tel quadrilatère un parallélogramme. Observer que les sommets d’un
parallélogramme sont coplanaires.

Exercice 1.5.47 (Parallélogramme et corps de caractéristique 2). Montrer qu’un corps
K est de caractéristique 2 si et seulement si tout parallélogramme dans n’importe quel espace
affine sur K a des diagonales parallèles.

Solution. Si car(K) ̸= 2 on a déjà montré que les diagonales de tout parallélogramme s’inter-
sectent en leur milieu. Si car(K) = 2 et abcd est un parallélogramme, alors (avec les conditions
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équivalentes de l’exercice précédent)

a− c = (a− b) + (b− d) + (d− c) = (d− c) + (b− d) + (d− c) = (b− d) + 2(d− c) = b− d

et donc les diagonales ont même direction, c’est à dire, sont parallèles. □

Exercice 1.5.48 (Théorème de Varignon). Soit un quadrilatère abcd dans un plan affine sur
un corps K de car(K) ̸= 2. Montrer que les milieux des côtés du quadrilatère sont les sommets
d’un parallélogramme ; autrement dit, les bimédianes de abcd s’intersectent en leur milieu.

a b

c

d

a

c

b

d

a b

c

d

a

c

b

d

Exercice 1.5.49 (Famille de parallélogrammes). Soient abcd et a′b′c′d′ deux parallélo-
grammes dans un plan affine sur un corps K et notons

at = (1− t)a+ ta′ bt = (1− t)b+ tb′ ct = (1− t)c+ tc′ dt = (1− t)d+ td′

pour t ∈ K. Montrer que chaque atbtctdt est un parallélogramme, et observer que les som-
mets de cette famille de parallélogrammes sont alignés. Voici une illustration dans R2, où les
parallélogrammes noirs sont donnés et les autres sont calculés pour quelques valeurs de t ∈ R :

Ce principe est utilisé en graphisme informatique (dessin animé), pour créer des images inter-
médiaires entre deux positions tout en gardant certaines propriétés (comme le parallélisme).
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Exercice 1.5.50 (Quadrilatère complet). Un quadrilatère complet dans un plan affine est
la donnée de 4 droites ayant exactement six points d’intersection ; autrement dit, c’est un qua-
drilatère abcd dont les côtés opposés s’intersectent :

a b

c

d

e

f

m
n

p

Montrer que les milieux des 3 diagonales sont colinéaires (on suppose que car(K) ̸= 2).

Exercice 1.5.51 (Courbes de Bézier). Dans le plan affine réel, on considère trois points a,
b et c non-alignés, et pour t ∈ [0, 1] on définit les barycentres

mt = (1− t) · a+ t · b, nt = (1− t) · b+ t · c, pt = (1− t) ·mt + t · nt.

Montrer que la fonction Γ: [0, 1]→ R2 : t 7→ pt est quadratique en t, et que Γ(0) = a et Γ(1) = c.
L’image de Γ est un arc de parabole reliant a et c, et ayant ab comme tangente en a, et cb comme
tangente en c : c’est la courbe de Bézier de a à c avec point de contrôle b.

a b

c

a

c

b

On peut généraliser ce principe à des courbes de Bézier ayant n points de contrôle (et les courbes
seront polynomiales de degré n + 1). Ces courbes sont fort utilisées pour créer des images sur
ordinateur ; notamment les lettres que vous lisez ici-même (ainsi que la plupart des lettres partout
ailleurs) ont été créées avec des courbes de Bézier de degré 2 et 3. (Truetype fonts sont faits avec
des courbes de degré 2, alors que Postscript fonts utilisent des courbes de degré 3.)

Exercice 1.5.52 (Intersection d’hyperplans affines). Soit un espace vectoriel V de dimen-
sion n. Montrer que l’intersection de deux hyperplans affines H et H ′ de V est

– soit un hyperplan (si H = H ′),

– soit le vide (si H ̸= H ′ et H // H ′),

– soit un sous-espace affine de dimension n− 2 (si H ̸= H ′ et H //\H ′).
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Solution. Si H = H ′ alors bien sûr H ∩H ′ = H = H ′ est un hyperplan. Supposons maintenant
que H ̸= H ′ et H // H ′. Si b ∈ H ∩H ′ alors H = H0 + b = H ′

0 + b = H ′ est une contradiction ;
donc H ∩ H ′ = ∅. Supposons finalement que H ̸= H ′ et H //\ H ′. On a alors H0 ̸= H ′

0, et il
existe donc un 0 ̸= x ∈ H0 tel que x ̸∈ H ′

0, c’est à dire, il existe une droite vectorielle D0 = Kx

contenue dans H0 et supplémentaire à H ′
0. Ainsi il suit que V = D0⊕H ′

0 ⊆ H0 +H ′
0 ⊆ V , donc

H0 +H ′
0 = V . Par la formule “vectorielle”

dim(H0 +H ′
0) + dim(H0 ∩H ′

0) = dim(H0) + dim(H ′
0)

on sait alors que H0 ∩H ′
0 est un sous-espace vectoriel de dimension n− 2. De plus, pour a ∈ H

quelconque,D = D0+a est une droite affine, contenue dansH, et supplémentaire àH ′. Il y a donc
un unique point d’intersection de D avec H, soit b. Et enfin, (H0∩H ′

0)+b = (H0 +b)∩(H ′
0 +b) =

H ∩H ′ est un sous-espace affine de dimension n− 2. □

Exercice 1.5.53 (Sous-espaces supplémentaires). Soit un espace vectoriel V de dimension
n. Montrer que deux sous-espaces affines A,B ⊆ V sont supplémentaires (c’est à dire, de di-
rections supplémentaires au sens de sous-espaces vectoriels) si et seulement si leurs dimensions
sont de somme n et ils s’intersectent en un seul point.

B

cA

(Ce résultat sera utile pour définir les projections affines plus tard.)

Solution. Supposons que A0 ⊕ B0 = V ; déjà, la somme des dimensions de A et B est donc la
dimension de V . Pour a ∈ A et b ∈ B (un sous-espace affine n’est jamais vide !), on peut trouver
x ∈ A0 et y ∈ B0 tel que a− b = x+ y, et donc −x+ a = y + b ∈ (A0 + a) ∩ (B0 + b) = A ∩B,
montrant que cette intersection n’est jamais vide. Notons maintenant c ∈ A ∩ B, alors par
bijectivité de la translation t−c on a (A ∩ B) − c = (A − c) ∩ (B − c) = A0 ∩ B0 = {0}, ce qui
montre que {c} = A ∩B. L’intersection est donc bel et bien un seul point.

Réciproquement, si A ∩B = {c} alors A0 ∩B0 = (A− c) ∩ (B − c) = (A ∩B)− c = {0} ; et
parce que la somme des dimensions de A et B (c’est à dire, de A0 et B0) est la dimension de V ,
il suit par la formule “vectorielle”

dim(A0 +B0) + dim(A0 ∩B0) = dim(A0) + dim(B0)

que A0 ⊕B0 = V . Ainsi A et B sont des sous-espaces affines supplémentaires. □
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2.1. Le groupe linéaire

Une application f : V →W entre deux espaces vectoriels (sur le même corps K) est linéaire si elle
préserve toute combinaison linéaire. Bien sûr, des applications linéaires f : V →W et g : W → Z

se composent en une application linéaire gf : V → Z, cette composition est associative, et à les
applications identité pour neutres ; autrement dit, il y a une catégorie VecK d’espaces vectoriels
et applications linéaires. Une application linéaire f : V → W est complètement déterminée par
(sa linéarité et) son action sur une base de V . Si on choisit des bases (finies) de V et W , on peut
représenter f : V →W par une unique matrice. Pour tout sous-espace vectoriel E ⊆ V , l’image
par f est un sous-espace vectoriel f(E) de W ; et pour tout sous-espace vectoriel F ⊆W , l’image
réciproque par f est un sous-espace vectoriel f−1(F ) ⊆ V . L’image im(f) = f(V ) et le noyau
ker(f) = f−1{0} de f : V →W sont liés par le Théorème du Rang : dim(im(f))+dim(ker(f)) =
dim(V ).

Lorsqu’on veut étudier les “symétries” d’un espace vectoriel, il est naturel de considérer :

Définition 2.1.1. Soit un espace vectoriel V . Un automorphisme linéaire f : V → V est une
application linéaire bijective.

Si une application linéaire f : V → W est bijective, alors son inverse ensembliste f−1 : W → V

est aussi linéaire. Ainsi on obtient :

Proposition 2.1.2. L’ensemble GL(V ) des automorphismes linéaires d’un espace vectoriel V
est un sous-groupe de Bij(V ) ; on l’appelle le groupe général linéaire, ou tout simplement le
groupe linéaire, de V .

Par le Théorème du Rang on a immédiatement qu’une application linéaire f : V → V est bijective
si et seulement si ker(f) = {0}, si et seulement si im(f) = V . Rappelons aussi que les éléments
de GL(V ) peuvent être vus comme les “changements de base” dans V :

Proposition 2.1.3. Soit un espace vectoriel V . Une application linéaire f : V → V est un
automorphisme linéaire si et seulement si f envoie une (et alors toute) base sur une base.

Pour montrer les capacités “géométriques” du groupe GL(V ), prenons acte de :

Proposition 2.1.4. Tout automorphisme linéaire f : V → V envoie un sous-espace vectoriel
E ⊆ V sur un sous-espace vectoriel de même dimension. Pour deux sous-espaces vectoriels de
même dimension, E,E′ ⊆ V , il existe au moins un automorphisme linéaire f : V → V tel que
f(E) = E′.
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Ajoutons que, par sa bijectivité, tout f ∈ GL(V ) préserve (et réfléchit, par l’application inverse
f−1) toute incidence géométrique de sous-espaces vectoriels : si une configuration de sous-espaces
de V satisfait à des conditions exprimées à l’aide de leurs inclusions, réunions, intersections
et/ou sommes, alors tout f ∈ GL(V ) l’envoie sur une configuration de sous-espaces de mêmes
dimensions, satisfaisant aux mêmes conditions. Pour terminer ce premier paragraphe de rappels,
faisons le lien avec le calcul matriciel :

Lemme 2.1.5. Pour tout corps K et tout n ∈ N, l’ensemble

GL(n,K) = {M ∈ Kn×n |M inversible}

est un groupe pour le produit matriciel 1.

Proposition 2.1.6. Soit un espace vectoriel V de dimension n sur un corps K. Pour tout choix
de base de V , il y a un isomorphisme de groupes GL(V ) ∼= GL(n,K) identifiant f ∈ GL(V ) à
sa matrice par rapport à la base choisie.

On va maintenant décrire un premier sous-groupe important de GL(V ). Pour cela, rappelons
que f : V → V est inversible si et seulement si det(f) ̸= 0. (Pour définir det(f) on utilise une
base de V ; mais on montre ensuite que le choix de base est sans importance, et que donc
det(f) est bien un invariant numérique canonique de f : V → V .) On a donc une application
det : GL(V )→ K× = K \ {0}. Mais le domaine de cette application est le groupe linéaire de V ,
et le codomaine est le groupe multiplicatif (K×, ·, 1) du corps K. Il vient en fait que :

Théorème 2.1.7. Soit un espace vectoriel V de dimension n ≥ 1. L’application det : GL(V )→
K× : f 7→ det(A) est un homomorphisme surjectif de groupes. Son noyau, noté SL(V ), est appelé
le groupe linéaire spécial de V . On a ainsi une suite exacte courte

SL(V ) GL(V ) K×det

d’homomorphismes de groupes, et il suit notamment que GL(V )/SL(V ) ∼= K×.

Démonstration. Par multiplicativité du déterminant, l’application det est un homomorphisme
de groupes. Pour voir la surjectivité de det, on peut choisir une base {e1, ..., en} de V puis
observer que, pour tout α ∈ K×, l’automorphisme linéaire f ∈ GL(V ) déterminé par fe1 = αe1

et fei = ei pour i ̸= 1, est de déterminant α : car cela revient à définir f : V → V par rapport
à la base choisie par la matrice 

α

1
. . .

1


(remplie avec des 0). □

1. Si n = 0 alors “la matrice sans éléments” est l’unique élément de GL(n, K), qui est donc trivialement un
groupe. Du point de vue du calcul matriciel, cela est totalement sans intérêt ; mais du point de vue de l’algèbre,
l’espace nul {0}, et le groupe trivial GL({0}) = {id}, ont certainement leurs raisons d’être !
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Pour tout choix de base {e1, ..., en} de V , on a un isomorphisme GL(V ) ∼= GL(n,K), sous lequel
SL(V ) est donc identifié avec les matrices de déterminant égal à 1 :

SL(n,K) = {M ∈ Kn×n | det(M) = 1}.

On peut résumer ainsi : pour tout choix de base de V on a un diagrame commutatif

SL(V ) GL(V ) K×

SL(n,K) GL(n,K) K×

det

det

d’homomorphismes de groupes, dont les lignes horizontales sont des suites exactes courtes, et
les flèches verticales sont les isomorphismes déterminés par la base choisie de V . Ainsi on a
GL(V )/SL(V ) ∼= K×, et de même au niveau matriciel. (Ces suites exactes courtes sont scindées,
mais pas de façon canonique ; c’est pourquoi on ne le détaille pas ici.)

Nous poursuivons l’étude du groupe GL(V ) par le calcul de son centre 2 : cela donnera un
sous-groupe normal important. Avec l’avantage du recul, on définit :

Définition 2.1.8. Soit un espace vectoriel V et λ ∈ K×. L’application λid : V → V : x 7→ λx

est un automorphisme linéaire, appelée homothétie linéaire de rapport λ.

Il est évident que :

Proposition 2.1.9. Soit un espace vectoriel V de dimension n ≥ 1. L’ensemble H(V ) des
homothéties linéaires de V est un sous-groupe de GL(V ), isomorphe à (K×, ·, 1). Il suit que ce
groupe est commutatif.

Si on considère l’isomorphisme de groupes GL(V ) ∼= GL(n,L) déterminé par une base {e1, ..., en}
de V , alors le sous-groupe H(V ) ⊆ GL(V ) est identifié aux matrices scalaires non-nulles :

H(n,K) = {


λ

. . .
λ

 | λ ∈ K×}.

Autrement dit, on a un diagramme commutatif

H(V ) GL(V )

H(n,K) G(n,K)

de groupes et d’homomorphismes, dont les flèches verticales sont des isomorphismes déterminées
par une base choisie de V . (En fait, l’isomorphisme H(V ) ∼= H(n,K) ne dépend pas de la base
choisie : c’est un isomorphisme canonique.)

2. Le centre d’un groupe G est le sous-groupe des éléments de G qui commutent avec tous les éléments de G ;
on le note Z(G). C’est toujours un sous-groupe normal.
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Théorème 2.1.10. Soit V un espace vectoriel, alors H(V ) est le centre de GL(V ).

Pour bien formuler la démonstration de ce théorème, il est utile d’introduire d’abord :

Lemme 2.1.11. Soit un espace vectoriel V . Pour tout 0 ̸= x ∈ V il existe un s ∈ GL(V ) fixant
exactement les points de Kx (donc s(y) = y si et seulement si y ∈ Kx).

Démonstration. Pour tout 0 ̸= x ∈ V on peut trouver une base {e1, ..., en} de V dont le premier
élément est x ; et ensuite on peut définir un automorphisme linéaire s : V → V par s(e1) = e1

et s(ei) = ei + ei−1 (pour i ≥ 2). C’est à dire, par rapport à cette base, la matrice de s est

1 1
1 1

. . .
1 1

1


(on remplit avec 0 où il n’y a pas de 1). Alors pour tout y =

∑
i αiei on a s(y) = y si et seulement

si (α1 +α2)e1 + (α2 +α3)e2 + ...+ (αn−1 +αn)en =
∑

i αiei, si et seulement si αi = 0 pour tout
i ̸= 1, si et seulement si y = α1e1 = α1x. (Il existe bien d’autres automorphismes linéaires à cet
effet, mais ce choix particulier nous sera utile plus tard, du fait que det(s) = 1.) □

Démonstration du théorème. Pour V = {0} tout est évident ; supposons donc V ̸= {0}. L’in-
clusion H(V ) ⊆ Z(GL(V )) est évident. Réciproquement, soit un f ∈ GL(V ) tel que fg = gf

pour tout g ∈ GL(V ). Soit x ̸= 0 dans V , alors il existe un automorphisme s ∈ GL(V ) dont
les seuls points fixes sont les multiples de x (voir le lemme ci-dessus). Ainsi, de fs = sf

on a fx = f(sx) = s(fx), donc fx est un point fixe de s. Il suit que 0 ̸= fx ∈ Kx,
donc il existe λ ∈ K× tel que fx = λx. A priori ce λ dépend de x, mais si x′ = αx alors
fx′ = f(αx) = αλx = λx′ ; et si x, x′ ∈ V sont linéairement indépendants, et on suppose que
fx = λx, fx′ = λ′x′, et f(x+x′) = λ′′(x+x′), alors f(x+x′) = λx+λ′x′ = λ′′(x+x′) = λ′′x+λ′′x′

implique que λ = λ′(= λ′′). C’est à dire, il existe un seul λ ∈ K× tel que fx = λx pour tout
x ∈ V ; ainsi f = λid ∈ H(V ). □

Puisqu’il en est le centre, le sous-groupe H(V ) de GL(V ) est normal 3. Notons aussi que, en
dimension 0 et 1, H(V ) et GL(V ) coincident, et ce dernier est donc commutatif. Ce n’est pas
le cas pour dim(V ) ≥ 2 ! Remarquons finalement qu’au niveau matriciel, par les isomorphismes
H(V ) ∼= H(n,K) et GL(V ) ∼= GL(n,K), H(n,K) est le centre de GL(n,K).

On dit qu’un groupe (G, ·, 1) est linéaire s’il est isomorphe à un sous-groupe de GL(V ) (et
la theorie des représentations (linéaires) des groupes abstraits est une branche importante des
mathématiques). Puisque GL(V ) ∼= GL(n,K), cela revient à dire que G est, à isomorphisme

3. Le quotient GL(V )/H(V ) est appelé le groupe projectif linéaire de l’espace vectoriel V , et noté P GL(V ).
En effet, il est le groupe des automorphismes projectifs de l’espace projectif déterminé par l’espace vectoriel V

(dont les points projectifs sont les droites vectorielles, les droites projectives sont les plans vectoriels, etc.). Mais
c’est une autre histoire...
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près, un groupe de matrices de déterminant non-nul (pour le produit matriciel) ; on dit parfois
aussi que G est un groupe matriciel. Bien sûr, GL(n,K) est lui-même un groupe linéaire, ainsi
que le sous-groupe des homothéties (matrices scalaires non-nulles) et le sous-groupe spécial
(matrices de déterminant 1). On verra d’autres exemples de groupes linéaires dans les sections
qui suivent !

2.2. Le groupe affine

Nous souhaitons désormais étudier les bijections d’un espace vectoriel qui préservent les “figures
affines” (et leurs “propriétés affines”) dans cet espace. Pour cela, nous étudions l’interaction
entre translations et applications linéaires (et, en particulier, automorphismes linéaires).

La situation générale d’abord :

Proposition 2.2.1. Soient des espaces vectoriels V et W .

1. Soit une application linéaire f : V → W , alors pour tout t ∈ T (V ) il existe t′ ∈ T (W ) tel
que ft = t′f .

2. Si tf = t′f ′ pour des applications linéaires f, f ′ : V →W et des translations t, t′ : W →W ,
alors t = t′ et f = f ′.

Démonstration. (1) Soit t = ta : V → V , alors pour toute application linéaire f : V → W et
tout x ∈ V on voit facilement que f(tax) = f(x+ a) = fx+ fa = tfa(fx), c’est à dire, on pose
t′ = tfa ∈ T (W ). (2) En effet, tf = t′f ′ implique t0 = t(f0) = t′(f ′0) = t′0 d’où t = t′ ; et de là
on a tf = tf ′ ce qui implique f = f ′ par bijectivité de t. □

Par conséquent, toute composition de translations ti et d’applications linéaires fi, p.e.

U U V V V W X X

t4f3f2t3t2f1t1

t1 f1 t2 t3 f2 f3 t4

s’écrit de manière unique comme la composée d’une application linéaire suivie d’une translation :

U X X
f t

(et on peut explicitement calculer f et t si l’on veut). Cela justifie la définition suivante :

Définition 2.2.2. Une application g : V →W entre espaces vectoriels est affine si g = tf avec
f : V →W une (unique) application linéaire et t : W →W une (unique) translation.

Par ce qui précède, la composée de deux applications affines est une application affine ; et bien
sûr l’application identité, id : V → V : x 7→ x, est affine. Comme la composition d’applications est
bien associative, avec neutre donné par id, on obtient une catégorie AffK des espaces vectoriels
(sur le corps K) avec les applications affines.

Notons tout de suite une sorte de “5e Postulat d’Euclide” pour les applications affines :
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2.2. Le groupe affine

Proposition 2.2.3. Soit des espaces vectoriels V et W . Une application affine g : V → W est
complètement déterminé par sa partie linéaire et l’image d’un point.

Démonstration. On sait que g = tf pour une unique application linéaire f : V → W (supposée
connue) et une unique translation t : W → W (qu’on cherche à déterminer). Ecrivant t = tb

pour b ∈W , on a donc gx = fx+ b. Si on connait l’image ga0 d’un point (quelconque) a0 ∈ V ,
alors ga0 = fa0 + b implique que b = ga0 − fa0, et ainsi t est déterminé. □

Le rôle du calcul barycentrique pour la géométrie affine est encore souligné par :

Proposition 2.2.4. Une application g : V → W entre espaces vectoriels est affine si et seule-
ment si g préserve les barycentres, i.e. pour tout a0, .., ak ∈ V et α0, ..., αk ∈ K tel que

∑
i αi = 1

on a g(
∑

i αiai) =
∑

i αigai.

Démonstration. On montre facilement que toute application linéaire f : V →W et toute trans-
lation t : W →W préserve les barycentres ; cela implique que toute composée g = tf fait ainsi.

Réciproquement, soit une application g : V →W préservant les barycentres. Si g0 = 0 alors
g est linéaire, car toute combinaison linéaire des vecteurs a1, ..., ak peut être vu comme un
barycentre des points 0, a1, ..., ak ; et toute application linéaire est aussi affine. Si g0 = a ̸= 0
alors t−ag0 = 0, et f = t−ag est une application linéaire selon l’argument précédent. Mais alors
g = taf est une application affine. □

Corollaire 2.2.5. Toute application affine g : V → W entre espaces vectoriels est entièrement
déterminée par l’image d’un repère affine {a0, ..., an} de V .

Corollaire 2.2.6. Soit une application affine g : V → W entre espaces vectoriels. Pour tout
sous-espace affine A ⊆ V , l’image par g est un sous-espace affine g(A) ⊆ W . Pour tout sous-
espace affine B ⊆W , l’image inverse par g est soit vide, soit un sous-espace affine g−1(B) ⊆ V .

Corollaire 2.2.7. Soit un espace vectoriel V . Un sous-ensemble A ⊆ V est un sous-espace
affine si et seulement si A est l’image d’une application affine injective.

Démonstration. Etant donné un sous-espace affine A ⊆ V , et fixant a ∈ A, la composée de
l’inclusion linéaire i : A0 → V : x 7→ x avec la translation (bijective) ta : V → V : x 7→ x + a

est une application affine injective g : A0 → V : x 7→ x + a dont l’image est exactement A.
Réciproquement, le corollaire précédent s’applique. □

Une application affine g = tf : V → W est injective (surjective, bijective) si et seulement
sa partie linéaire f l’est, parce que la translation t est toujours bijective. Ainsi, en particulier,
l’inverse (ensembliste) d’une application affine bijective est g−1 = (tf)−1 = f−1t−1 = t′f−1

pour une unique t′ ∈ T (V ) (que l’on peut facilement calculer avec la Proposition 2.2.1), et avec
f−1 ∈ GL(V ). Ceci montre que g−1 est aussi une application affine. En toute logique on pose :

Définition 2.2.8. Soit un espace vectoriel V . Un automorphisme affine g : V → V est une
application affine bijective.

38



2. Applications affines

Ce qui précède montre immédiatement :

Proposition 2.2.9. Soit un espace vectoriel V . L’ensemble GA(V ) des automorphismes affines
de V est un sous-groupe de Bij(V ), appelé le groupe affine de V .

Tout comme les f ∈ GL(V ) sont les “changements de base (vectorielle)”, les g ∈ GA(V ) sont
les “changements de repère affine” :

Proposition 2.2.10. Soit un espace vectoriel V . Une application affine g : V → V est un
automorphisme affine si et seulement si g envoie un (et alors tout) repère affine de V sur un
repère affine de V .

Démonstration. Une application affine g = tf est injective, surjective ou bijective si et seulement
si sa partie linéaire f l’est. Ainsi, une application affine g : V → V (V de dimension finie) est un
automorphisme si et seulement si elle est injective, si et seulement si elle est surjective.

Supposons d’abord que l’application affine g est injective. Etant donné un repère affine
{a0, ..., an} de V , si un élément gai0 ∈ {ga0, ..., gan} serait un barycentre des autres éléments de
cet ensemble, alors il serait de même pour ai0 ∈ {a0, ..., an}, contredisant ainsi que {a0, ..., an}
est affinement libre. Ainsi {ga0, ..., gan} est affinement libre dans V , et donc un repère affine
(car comptant le “bon nombre” d’éléments).

Réciproquement, supposons que l’application affine g envoie un repère affine {a0, ..., an} sur
un repère affine {ga0, ..., gan}. Tout y =

∑
i αigai ∈ V (avec

∑
i αi = 1) est alors l’image par g

de x =
∑

i αiai. Ceci montre la surjectivité de g. □

Regardons maintenant de plus près le groupe GA(V ) et sa relation avec les groupes déjà
rencontrés. Sans doute le résultat le plus important est :

Théorème 2.2.11. Soit un espace vectoriel V . L’application GA(V ) → GL(V ), envoyant une
application affine g = tf sur sa partie linéaire f , est un homomorphisme surjectif de groupes,
dont T (V ) est le noyau ; il suit que GL(V ) ∼= GA(V )/T (V ). De plus, la suite exacte courte

T (V ) GA(V ) GL(V )

est scindée par l’inclusion de GL(V ) dans GA(V ) ; il suit que GA(V ) = T (V ) ⋊GL(V ).

Démonstration. Notons, pour cette démonstration,

δ : GA(V )→ GL(V ) : g = tf 7→ f

l’application (bien définie, voir plus haut !) envoyant un automorphisme affine sur sa partie
linéaire. Pour tout g, g′ ∈ GA(V ) il suit que δ(g′g) = δ(t′f ′tf) = δ(t′t′′f ′f) = f ′f = δ(g′)δ(g) ;
ainsi δ est un homomorphisme de groupes. Sa surjectivité suit du fait que, pour tout f ∈ GL(V ),
on peut poser g = idV f (donc on prend la translation “identité”, t = idV = t0) pour voir
que δ(idV f) = f . C’est à dire, la surjection δ : GA(V ) → GL(V ) est scindée par l’inclusion
GL(V ) → GA(V ) : f 7→ f (et cette inclusion est aussi un homomorphisme). Finalement, il est
immédiat que ker δ = {g = tf ∈ GA(V ) | f = idV } = T (V ). □
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On sait que le groupe des translations T (V ) est isomorphe au groupe (V,+, 0), l’isomorphisme
étant donné par t 7→ t0, avec inverse a 7→ ta. Ainsi on a un diagramme commutatif de groupes
et homomorphismes,

T (V ) GA(V ) GL(V )

V GA(V ) GL(V )

dont les flèches verticales sont des isomorphismes. Cela montre que la suite exacte courte scin-
dée à la première ligne peut être remplacé par la suite exacte courte scindée à la deuxième
ligne, et permet d’écrire aussi GA(V ) = V ⋊GL(V ). Par ailleurs, identifiant ces suites exactes
courtes scindées par des actions de groupes 4, l’action correspondant à la première suite est la
conjugaison,

T (V )×GL(V )→ T (V ) : (t, f) 7→ ftf−1,

alors que l’action correspondant à la deuxième suite est l’action standard,

V ×GL(V )→ V : (a, f) 7→ fa,

chose tout à fait naturel puisque GL(V ) ⊆ Bij(V ). (Et ces deux actions sont isomorphes !)
Ayant décrit le groupe des automorphismes affines, il est important de comprendre comment

les “figures affines” dans un espace vectoriel sont transformées.

Proposition 2.2.12. Soit un espace vectoriel V et g ∈ GA(V ). Pour tout sous-espace affine
A ⊆ V , l’image g(A) est un sous-espace affine de même dimension que A. Si B ⊆ V est un autre
sous-espace affine, alors on a A // B si et seulement si g(A) // g(B). Et si A,A′ ⊆ V sont deux
sous-espaces affines de même dimension, alors il existe (au moins) un g ∈ GA(V ) envoyant A
sur A′.

Démonstration. Puisque g = tf avec t ∈ T (V ) et f ∈ GL(V ), il suffit de démontrer les propriétés
énoncées pour toute translation et toute automorphisme linéaire.

Soit d’abord tc ∈ T (V ). Pour a ∈ A on voit que tc(A) = tc(A0 +a) = A0 +(a+c) = ta+c(A0)
est un sous-espace affine de même dimension que A. Ensuite, supposant que b ∈ B, on a aussi
tc(B) = tb+c(B0), ce qui montre que A // B si et seulement si A0 = B0, si et seulement si
tc(A) // tc(B).

Soit maintenant f ∈ GL(V ). Toujours pour a ∈ A, on a f(A) = f(ta(A0)) = tfa(f(A0)) et
puisque f(A0) est un sous-espace vectoriel de même dimension que A0, f(A) est un sous-espace
affine de même dimension que A (bien que de direction différente). De même, si maintenant
B = tb(B0) alors f(B) = f(tb(B0)) = tfb(f(B0)), et donc A // B si et seulement si A0 = B0, si
et seulement si f(A0) = f(B0), si et seulement si f(A) // f(B).

Finalement, il suffit d’observer que, pour A = A0 +a et A′ = A′
0 +a′ avec A0 et A′

0 de même
dimension, on peut toujours trouver (au moins) un automorphisme linéaire f ∈ GL(V ) tel que
f(A0) = A′

0, puis l’application affine g = ta′ft−a envoie A sur A′. □

4. La suite exacte courte scindée N // j // G p // // Q
oosoo equivaut l’action j(N) × s(Q) → j(N) “par conjugai-

son”.
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Ajoutons au résultat précédent que, par sa bijectivité, tout g ∈ GA(V ) préserve aussi toute
relation d’incidence entre sous-espaces affines. Ainsi, tout automorphisme affine de V envoie
points sur points, droites sur droites, plans sur plans, etc., et préserve (et reflète) toute incidence
et tout parallélisme entre points, droites, plans, etc. Bref, le groupe affine détecte (ou décrit)
exactement le caractère affine de figures dans V .

D’un autre point de vue, on peut aussi voir les éléments de GA(V ) comme les changements de
repère affine. Ainsi le résultat ci-dessus implique que le choix de repère affine est sans importance
lorsqu’on s’en sert pour démontrer des résultats “affines” (par un calcul barycentrique, p.e.).

Par ailleurs, le résultat montre aussi la transitivité du groupe GA(V ) sur tous les ensembles
de sous-espaces affines de même dimension—et notamment sur les points de V ! Ainsi, il atteste
que, vu par le groupe GA(V ), l’espace V est homogène (ce qu’il n’était pas pour le groupe
GL(V ) : car 0 est un point fixe de tous les éléments de GL(V )).

2.3. Le groupe des dilatations

Un sous-groupe important de GL(V ) est son centre, le groupe des homothéties linéaires H(V ).
Un automorphisme affine quelconque g ∈ GA(V ) est toujours la composée d’une translation
t ∈ T (V ) avec un automorphisme linéaire f ∈ GL(V ). Se limitant aux automorphismes linéaires
qui se trouvent dans le centre H(V ) = Z(GL(V )), on définit :

Définition 2.3.1. Une dilatation 5 est un automorphisme affine dont la partie linéaire est une
homothétie linéaire.

Explicitement on peut écrire une dilatation comme d : V → V : x 7→ λx + a, pour λ ∈ K×

et a ∈ V . Autrement dit, g ∈ GA(V ) est une dilatation si et seulement si son image par
l’homomorphisme surjectif GA(V ) → GL(V ) est dans le sous-groupe normal H(V ) ⊆ GL(V ).
Ainsi il vient de suite :

Proposition 2.3.2. L’ensemble D(V ) des dilatations d’un espace vectoriel V est l’image réci-
proque par l’homomorphisme surjectif GA(V ) // //GL(V ) du sous-groupe normal H(V ) ⊆ GL(V ).
Ainsi D(V ) est un sous-groupe normal de GA(V ) rendant commutatif le diagramme

D(V ) H(V )

GA(V ) GL(V )

de groupes et homomorphismes, dont les flèches verticales sont des inclusions.

On obtient immédiatement une “sous-suite” exacte courte scindée (par l’inclusion)

T (V ) D(V ) H(V )

T (V ) GA(V ) GL(V )

5. Attention, ce terme ne signifie pas toujours la même chose dans les références !
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montrant que D(V ) = T (V ) ⋊H(V ). (On peut remarquer que H(V ) et T (V ) sont des groupes
commutatifs, mais que D(V ) ne l’est pas nécessairement : un produit semi-direct de groupes
commutatifs n’est donc pas toujours commutatif !)

La particularité des dilatations est tout à fait géométrique :

Proposition 2.3.3. Un automorphisme affine g : V → V d’un espace vectoriel est une dilatation
si et seulement si g envoie chaque droite affine dans V sur une droite affine parallèle.

Démonstration. Soit une dilatation g = th, avec t ∈ T (V ) et h ∈ H(V ), et une droite affine
ta(Kx) (pour x ̸= 0). On a alors que g(ta(Kx)) = thta(Kx) = t′h(Kx) (et on peut explicitement
calculer t′ ∈ T (V ) si l’on souhaite). Mais toute homothétie h = λid : V → V (λ ̸= 0) envoie toute
droite vectorielle sur elle-même, donc t′h(Kx) = t′(Kx), qui est par définition parallèle à ta(Kx).
Réciproquement, supposons qu’un automorphisme g = tf ∈ GA(V ) envoie toute droite affine
sur une droite affine parallèle ; alors sûrement la même chose est vraie pour l’application linéaire
f = t−1g (puisque toute translation fait ainsi). Mais f envoie donc toute droite vectorielle
sur elle-même, et nous avons déja vu (dans la démonstration de Z(GL(V )) = H(V )) qu’un
tel f ∈ GL(V ) est nécessairement une homothétie (linéaire). Ainsi g est la composée d’une
translation avec une homothétie linéaire. □

Proposition 2.3.4 (Classification des dilatations). Pour chaque dilatation d ∈ D(V ), une
et une seule des trois possibilités suivantes est satisfaite :

– d ne fixe aucun point : d est une translation par un vecteur v ̸= 0,

– d fixe exactement un point : d est une homothétie affine de rapport λ ̸= 1 et de centre le
point fixe,

– d fixe tous les points : d est l’application identité.

Démonstration. Posons d = tahλ avec tax = x+ a et hλx = λx (λ ∈ K×). Si λ = 1 alors d = ta,
et soit a = 0 et alors d = id fixe tous les points, soit a ̸= 0 et alors d = ta ne fixe aucun point.
Si λ ̸= 1 (et donc 1 − λ ∈ K×) alors dx = x si et seulement si λx + a = x, si et seulement si
x = (1 − λ)−1a ; c’est à dire, d a un unique point fixe, c := (1 − λ)−1a. Dans ce cas on peut
réécrire

dx = tahλx = λx+ a = λ(x− c) + c = tchλt−cx,

et ceci montre comment d : V → V est une homothétie affine de centre c (= le point fixe) et de
rapport λ. □

Corollaire 2.3.5. Toute dilatation d ∈ D(V ) est complètement déterminé par l’image de deux
points distincts de V . (Et rappelons que pour une translation un seul point suffit.)

Démonstration. Si d1a = d2a et d1b = d2b pour a ̸= b alors d1d
−1
2 a = a et d1d

−1
2 b = b donc

d1d
−1
2 = id par la classification des dilatations, d’où d1 = d2. (Si t : V → V : x 7→ x+ b envoie a

sur a′, alors a′ = ta = a+ b donc nécessairement b = a′ − a.) □
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Corollaire 2.3.6. Soit une dilatation d ∈ D(V ), notons a′ = da et b′ = db pour a, b ∈ V , et
supposons que ces quatre points sont distincts et non alignés trois à trois. Si d est une translation
alors aa′ // bb′ ; et si d est une homothétie affine alors aa′ et bb′ sont concourantes au centre de
l’homothétie. (Et rappelons que ab // a′b′ dans tous les cas.)

Démonstration. Par hypothèse, d n’est pas l’identité (car da = a′ ̸= a). Si d est une translation,
notons d : V → V : x 7→ x+v (de vecteur v ̸= 0), alors on a a′ = a+v et donc aa′ = K(a′−a)+a =
Kv + a pour tout a ; ainsi il suit que aa′ // bb′ pour tout a ̸= b. Si d est une homothétie affine,
notons d : V → V : x 7→ λ(x−c)+c (de centre c ∈ V et rapport λ ̸= 1), alors on a a′ = λ(a−c)+c
et donc aa′ = K(a′ − a) + a = K((1− λ)(c− a)) + a = K(c− a) + a = ac pour tout a ; ainsi il
suite que c ∈ aa′ ∩ bb′, et puisque l’intersection de deux droites affines distinctes est au plus un
point, on a bien {c} = aa′ ∩ bb′. □

Dans la situation de l’énoncé, on a les images suivantes dans le plan affine contenant a, a′, b, b′ :

a a′

b b′

a a′c

b

b′

On voit ainsi que les dilatations (i.e. translations et homothéties) “unifient” deux situations
importantes en géométrie affine :

Proposition 2.3.7 (Lemme du parallélogramme). Soient deux droites distinctes et paral-
lèles aa′ et bb′. Alors on a ab // a′b′ (c’est à dire, le quadrilatère abb′a′ est un parallélogramme)
si et seulement s’il existe une (unique) translation t : V → V telle que a′ = ta et b′ = tb.

Démonstration. Il nous reste à montrer une implication. Soit l’unique translation t : V → V tel
que ta = a′. Notant x = tb, on cherche à montrer que x = b′. On a ab // a′x (par ce qui précède)
et ab // a′b′ (par hypothèse), donc a′x // a′b′, donc a′x = a′b′ (car ils ont le point a′ en commun).
De même, on a aa′ // bx (par ce qui précède) et aa′ // bb′ (par hypothèse), donc bx = bb′ (car ils
ont le point b en commun). Ainsi {x} = a′x∩ bx = a′b′∩ bb′ = {b′}, d’où x = b′ comme voulu. □

L’énoncé suivant honore Thales 6 de Milet (ca. −600).

Proposition 2.3.8 (Théorème de Thales). Soient deux droites distinctes aa′ et bb′ concou-
rantes en un cinquième point c. Alors on a ab // a′b′ si et seulement s’il existe une (unique)
homothétie affine h : V → V de centre c telle que a′ = ha et b′ = hb.

Démonstration. Il nous reste à montrer une implication. Soit h : V → V l’unique homothétie
affine telle que hc = c et ha = a′. Notant x = hb, on cherche à montrer que x = b′. On a
c ∈ bx (par ce qui précède) et c ∈ bb′ (par hypothèse), donc bx = bb′. On a ab // a′x (par ce qui
précède) et ab // a′b′ (par hypothèse), donc a′x = a′b′ (car ils ont un point en commun). Ainsi
{x} = bx ∩ a′x = bb′ ∩ a′b′ = {b′} et on a x = b′ comme voulu. □

6. En grec : Θαλης ; par ailleurs, en français, on dit Milet pour l’ancienne cité grecque Μίλητος.
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2.4. Encore quelques résultats géométriques

Nous avons déjà démontré le résultat suivant à l’aide des barycentres ; mais voici une démons-
tration (plus élégante et plus courte !) par les dilatations :

Proposition 2.4.1 (Théorème de Menelaos—avec homothéties). Soit un triangle abc, et
x ∈ bc, y ∈ ca et z ∈ ab trois points distincts des sommets du triangle. Notons les homothéties
h1, h2 et h3 déterminées par

h1x = x et h1b = c, h2y = y et h2c = a, h3z = z et h3a = b

et de rapports λ1, λ2 et λ3. Alors les points x, y et z sont alignés si et seulement si λ1λ2λ3 = 1.

y

c

a b z

x

Démonstration. Notons que hi ̸= id (pour tout i), car a, b et c sont distincts. La composée de
ces trois homothéties, soit h = h3h2h1, est une dilatation ayant b pour point fixe : c’est donc
l’homothétie de centre b et rapport λ = λ3λ2λ1. On a toujours que h1(xy) = xy = h2(xy) (car xy
est une droite passant par le centre de h1, resp. h2), et donc h2h1(xy) = xy. Aussi, h3(xy) = xy

si et seulement si z ∈ xy (car z est le centre de h3, et seules les droites passant par le centre
de l’homothétie sont envoyées sur elles-mêmes). Ainsi z ∈ xy si et seulement si h(xy) = xy, et
puisque xy ne contient pas le point b (= le centre de h), ceci est encore équivalent à h = id, c’est
à dire λ = 1. □

L’énoncé ci-dessus semble, à première vue, différent de l’énoncé du théorème que nous avons
démontré à l’aide des barycentres : là-bas c’était α1α2α3 = −β1β2β3, et ici c’est λ1λ2λ3 = 1.
Cette différence s’explique par le fait que, pour a0 ∈ a1a2 (et a1 ̸= a2), on a d’un côté l’unique
homothétie h de centre a0 et rapport λ telle que ha1 = a2, et de l’autre côté l’unique barycentre
a0 = αa1 + βa2 (donc α + β = 1) : en comparant les deux expressions on trouve que λ = −α

β ;
et ceci explique cela. Ainsi, en faisant un “faux” calcul à partir de λ(a1 − a0) + a0 = a2, pour
les trois points colinéaires a0, a1, a2 on définit leur rapport

a2 − a0
a1 − a0

:= λ ∈ K.

Attention, cette “fraction” n’est qu’un symbole, et non pas une vraie proportion ! Ainsi on peut
reformuler le résultat précédent comme suit :

Corollaire 2.4.2 (Théorème de Menelaos—avec rapports). Soit un triangle abc, et x ∈ bc,
y ∈ ca et z ∈ ab trois points distincts des sommets du triangle. Alors les points x, y et z sont
alignés si et seulement si

c− x
b− x

· a− y
c− y

· b− z
a− z

= 1.
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Aussi le résultat suivant, dont nous avons déjà donné une démonstration à l’aide de barycentres,
peut être énoncé avec des rapports :

Corollaire 2.4.3 (Théorème de Ceva—avec rapports). Soit un triangle abc, et x ∈ bc,
y ∈ ca et z ∈ ab trois points distincts des sommets du triangle. Alors les droites ax, by et cz
sont concourantes ou parallèles si et seulement si

c− x
b− x

· a− y
c− y

· b− z
a− z

= −1.

z
b

p

a

y

c

x

a

b
z

c

x
y

Pour illustrer encore l’importance des dilatations (et la “dichotomie” créée par translations
et homothéties), démontrons un résultat fameux que l’on doit au français Girard Desargues
(1591–1661), architecte et fondateur de la géométrie projective :

Proposition 2.4.4 (Axiome de Desargues—affine). Soient deux triangles disjoints abc et
a′b′c′ tels que aa′, bb′ et cc′ sont soit parallèles, soit concourantes. Si ac // a′c′ et bc // b′c′ alors
aussi ab // a′b′.

a
b

a′
b′

c

c′

x

a

a′

b b′

c

c′

Démonstration. Supposons d’abord que les trois droites aa′, bb′ et cc′ sont parallèles. Soit alors
l’unique translation t : V → V envoyant a sur a′. Par le Lemme du parallélogramme (justifié par
les hypothèses ac // a′c′ et bc // b′c′), on a d’abord tc = c′, et ensuite aussi tb = b′ ; ainsi ab // a′b′.
Si les droites aa′, bb′ et cc′ sont concourantes, alors on a “la même démonstration” mais avec
des homothéties (et le théorème de Thales) ! □

Le résultat ci-dessus n’est pas un “axiome” dans le cadre de la géométrie affine linéaire (que nous
pratiquons dans ce cours)—c’est tout simplement un théorème, et nous venons d’en donner la
démonstration ! Mais dans une approche axiomatique de la géométrie affine, dépourvue de toute
algèbre linéaire, on définit un plan affine (abstrait) comme la donnée d’un ensemble P de “points”
et un ensemble D de “droites”, satisfaisant aux axiomes d’incidence suivants : (i) deux points
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distincts sont contenus dans une unique droite, (ii) il existe trois points non-colinéaires, et (iii)
pour toute droite et tout point en dehors de cette droite, il existe une unique autre droite passant
par ce point et disjointe de la droite donnée (5e Postulat d’Euclide). Il existe de tels plans affines
dans lesquels le résultat ci-dessus n’est pas satisfait – le plus célèbre est le plan de Moulton, voir
[Forest Ray Moulton, A Simple Non-Desarguesian Plane Geometry, Transactions of the AMS,
1902, pp. 192–195] – et on peut alors l’ajouter comme un axiome, auquel cas on parle d’un plan
affine arguésien.

Proposition 2.4.5 (Desargues—affine, réciproque). Soient deux triangles disjoints abc et
a′b′c′ tels que ab // a′b′, ac // a′c′ et bc // b′c′. Alors les droites aa′, bb′ et cc′ sont soit parallèles,
soit concourantes.

a
b

a′
b′

c

c′

x

a

a′

b b′

c

c′

Démonstration. Supposons que aa′ et bb′ s’intersectent en un point x. Par le théorème de Thales,
il existe une unique homothétie affine h de centre x et envoyant a sur a′, et b sur b′. Soit le point
c′′ := hc. La droite a′c′′ est nécessairement parallèle à ac et passant par a′ : elle est (par les
hypothèses et le “5e Postulat”) égale à a′c′. De même, la droite b′c′′ est nécessairement parallèle
à bc et passant par b′ : elle est égale à b′c′. Puisque {c′′} = a′c′′ ∩ b′c′′ = a′c′ ∩ b′c′ = {c′}, on a
hc = c′′ = c′ ; ce point est donc sur la droite xc, ce qui montre qu’aussi cc′ passe par x. □

Remarquons que les hypothèses des énoncés ci-dessus impliquent le parallélisme des deux plans
⟨a, b, c⟩ et ⟨a′, b′, c′⟩, ces plans étant identiques lorsque abc et a′b′c′ sont coplanaires. On peut
donc voir les desssins ci-dessus “dans le plan” ou “dans l’espace” ! Par ailleurs, le résultat sui-
vant est évident lorsqu’on le “voit” dans l’espace (réel) à trois dimensions, mais nécessite une
démonstration lorsqu’on le considère dans un plan :

Théorème 2.4.6 (Théorème de Desargues). Soient deux triangles disjoints abc et a′b′c′

tels que ab ∩ a′b′ = {r}, bc ∩ b′c′ = {s} et ca ∩ c′a′ = {t}. Si aa′, bb′ et cc′ sont concourantes
(en x disons) alors les points r, s et t sont alignés. (“Si les sommets de deux triangles sont en
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perspective centrale alors leurs côtés sont en perspective axiale”.)

r

s

t

x

a
c

a′c′

b

b′

Le dessin ci-dessus montre une configuration de Desargues : il est donné par 10 points et 10 droites
qui, vus dans l’espace, sont complètement déterminés par 5 plans (“en position générale”). Une
démonstration peut être donnée par applications répétées du Théorème de Menelaos. Pour une
démonstration élémentaire dans un plan affine arguésien abstrait (et donc parfaitement valable
dans un plan affine linéaire !), qui consiste à appliquer plusieurs fois l’Axiome de Desargues, voir
[M. Prazmowska, A proof of the projective desargues axiom in the desarguesian affine plane,
Demonstratio Mathematica 37, 2004, pp. 921–924].

Il y a un sens très précis dans lequel le Théorème de Desargues ci-dessus implique l’Axiome
de Desargues. Intuitivement, travaillant dans un plan affine, on peut accepter que deux droites
sont parallèles si et seulement si elles s’intersectent “à l’infini”. Ainsi, si on ajoute au plan
affine des points “à l’infini”, alors deux droites distinctes ont toujours un et un seul point en
commun : soit un point “affine”, soit un point “à l’infini”. On obtient alors ce qu’on appelle un
plan projectif. Si, dans le dessin ci-dessus, on s’imagine les points r, s et t “à l’infini”, alors on
a ab // a′b′, ac // a′c′ et bc // b′c′ ; et on récupère exactement l’énoncé “central” de l’Axiome de
Desargues. Si, de plus, on s’imagine le point x “à l’infini”, alors on retrouve l’énoncé “parallèle”
dudit résultat. Par ailleurs, avec x “à l’infini” ou pas, on peut aussi s’imaginer seulement r “à
l’infini” : dans ce cas, ab//a′b′, et la droite st n’aura pas de point “affine” en commun avec ab ou
a′b′, mais bien un point “à l’infini”, donc on trouve que st//ab. Ainsi, le Théorème de Desargues
ci-dessus implique quatre versions affines “avec parallélisme” :

Cette observation a mené Jean-Victor Poncelet (1788–1867) a écrire son Traité des propriétés
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projectives des figures lorsqu’il était prisonier de guerre en Russie en 1812 (en tant que polytech-
nicien à la Grande Armée de Napoléon). Ajoutons qu’un autre “bonus” de la géométrie plane
projective, est qu’elle est autoduale : lorsqu’on échange “points” et “droites” dans l’énoncé d’un
théorème, et on garde les relations d’incidence, alors on obtient un autre théorème valide. C’est
le cas pour le Théorème de Desargues, et il suit que la condition nécessaire de l’énoncé ci-dessus
implique la condition suffisante ! C’est pourquoi, en géométrie affine, l’Axiome de Desargues
implique sa réciproque, comme nous avons démontré.

Pour clore ce chapitre, voici encore un autre grand classique de la géométrie affine, cette fois
portant le nom de Pappus 7 d’Alexandrie (ca. 290–350) :

Proposition 2.4.7 (Théorème de Pappus—affine). Soit deux droites distinctes coplanaires,
et trois points distincts sur chaque droite, disons a, b, c et a′, b′, c′, qui sont aussi distincts de
l’éventuel point d’intersection des deux droites. Si ab′ // bc′ et a′b // b′c alors aa′ // cc′.

a b c

a′ b′ c′

a b c

a′

b′

c′

Démonstration. Les droites coplanaires ab (contenant c) et a′b′ (contenant c′) sont soit paral-
lèles, soit sécantes (en un point d, disons). Dans le premier cas on démontre le résultat avec des
translations (“deux fois le lemme du parallélogramme”), dans le deuxième cas avec des homo-
théties (“deux fois le théorème de Thales”). Attention : on devra utiliser que deux translations,
resp. deux homothéties de même centre, commutent. Pour les translations, cela revient à dire
que (V,+, 0) est un groupe commutatif ; pour deux homothéties de centre c ∈ V , cela revient à
dire que (K×, ·, 1) est un groupe commutatif. □

Deux droites distinctes dans le plan (parallèles ou sécantes en un point) sont des cas “dégénérés”
de sections de coniques. Et en effet, le résultat ci-dessus est toujours valable lorsque les six points
a, b, c, a′, b′, c se trouvent sur une ellipse, une parabole ou une hyperbole :

a
b c

a′
b′ c′

a

b

c

a′
b′
c′

a

b

c

a′

b′

c′

7. En grec : “Πάππος” ; en lettres latines on devrait écrire plutôt “Pappos”, mais “Pappus” est la norme.
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Mieux encore, lorsqu’on ajoute des points “à l’infini” au plan affine, et on passe donc au plan pro-
jectif, non-seulement aura-t-on que deux droites distinctes s’intersectent toujours en un unique
point, mais il est aussi vrai que toutes les sections de coniques se réduisent à une ellipse. Ainsi,
avec une définition adéquate pour ‘section de conique’ en géométrie projective, le théorème de
Pappus ci-dessus devient :

Théorème 2.4.8 (Théorème de Pascal). Dans un plan projectif linéaire, un hexagone est
inscrit dans une ellipse si et seulement si ses côtés opposés (prolongés en droites) se coupent en
3 points alignés.

a
b c

a′ b′ c′

a
b c

a′
b′

c′

a
b c

a′ b′

c′

Un très jeune Blaise Pascal (1623–1662) a formulé ce théorème dans son Essay pour les coniques
datant de 1640. La droite contenant les 3 points d’intersections des côtés opposés d’un hexagone
inscrit dans une conique s’appelle aujourd’hui la droite de Pascal. Six points sur une conique
définissent 60 hexagones distincts, donc 60 droites de Pascal distinctes—et ces 60 droites ont
des propriétés d’incidence remarquables. Voir les références !

La démonstration de ce résultat est hors portée de ce cours—faute de temps pour introduire
en détail la géométrie projective 8. Néanmoins, on peut donner une conséquence affine de ce
résultat projectif, en remplaçant à nouveau l’ellipse par une paire de droites distinctes (on

8. Et on peut faire mieux encore ! Le résultat de Pascal se déduit d’un théorème de Cayley–Bacharach à propos
des courbes algébriques planes de degré 3. Et là on entre dans le domaine de la géométrie algébrique. Voir [D.
Eisenbud, M. Green, et J. Harris, Cayley-Bacharach Theorems and Conjectures, Bull. AMS 33 (1996), 295–324].
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“dégénère” l’ellipse) et en considérant un hexagone dont les sommets “alternent” entre ces deux
droites 9 :

Corollaire 2.4.9 (Théorème de Pappus—hexagonal). Soit deux droites distinctes copla-
naires, et trois points distincts sur chaque droite, disons a, b, c et a′, b′, c′, qui sont aussi distincts
de l’éventuelle intersection des deux droites. Si ab′∩a′b = {x}, bc′∩b′c = {y}, et ac′∩a′c = {z},
alors x, y et z sont alignés.

a b c

x
y

z

a′
b′

c′

La droite contenant les 3 points d’intersections ci-dessus s’appelle la droite de Pappus. Remar-
quons que cette droite est bien définie pour chacune des six façons pour dessiner un hexagone
alternant entre deux droites :

Par ailleurs, l’énoncé (projectif) ci-dessus implique aussi des situations de “parallélisme” dans
un plan affine. Par exemple, si x est “à l’infini” alors l’énoncé dit que ab′//a′b//yz (et de même si
soit y, soit z est “à l’infini”). Ou encore, si x et y sont “à l’infini”, alors l’énoncé dit que ab′ //a′b

et bc′ // b′c implique qu’aussi ac′ // a′c (et de même si soit x et z, soit y et z sont “à l’infini”).
Et c’est ainsi qu’on retrouve, finalement, le Théorème de Pappus (“affine”) qui était le point de
départ de cette discussion !

2.5. Exercices

Exercice 2.5.1 (Homomorphisme de groupes). Soient deux groupes G et H. Montrer
que tout application h : G → H respectant l’opération binaire de G, respecte aussi l’opération
nullaire et l’opération unaire de G ; il s’agit donc d’un homomorphisme de groupes.

9. On peut parfaitement considérer des hexagones dont les sommets sont placés n’importe comment sur deux
droites, mais on s’aperçoit vite que l’on n’obient que des cas triviaux.
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Exercice 2.5.2 (Sous-groupe normal). Montrer qu’un sous-groupe N d’un groupe G est
normal si et seulement si N = ker(f) pour un homomorphisme de groupes f : G → H. Indica-
tion : étant donné N ⊴ G, on peut considérer le quotient q : G→ G/N . (Que se passe-t-il pour
un sous-groupe “non-normal” ?)

Exercice 2.5.3 (Suite exacte de groupes). On dit qu’une suite (éventuellement infini)
d’homomorphismes entre groupes, disons

... Gk−1 Gk Gk+1 ...
fk−1 fk fk+1 fk+2

est exacte si ker(fi+1) = im(fi) (pour tout i). Notons 1 pour le groupe trivial. Montrer que les
suites

1 G H
f

G H 1g 1 G H 1h

sont exactes si et seulement si f est injectif, g est surjectif, et h est bijectif ; pour simplifier ces
diagrammes on les note souvent

G H
f

G H
g

G Hh

Exercice 2.5.4 (Suite exacte courte de groupes). Montrer que la donnée d’une suite exacte
courte de groupes, soit une suite exacte

N G Q,i p

est “la même chose” que la donnée d’un sous-groupe normal i(N) ⊴ G et le quotient G/i(N).
Attention, les groupes N et Q ne déterminent pas le groupe G ! Pour voir cela, montrer que les
suites

Z/(4) Z/(4)× Z/(2) Z/(2) et Z/(4) Z/(8) Z/(2)

(où on a Z/(4)→ Z/(8) : x 7→ 2x et sinon les homomorphismes évidents) sont exactes.

Exercice 2.5.5 (Suite exacte courte scindée et produit semidirect de groupes). Soit
N ⊴ G un sous-groupe normal et H ≤ G un sous-groupe quelconque d’un groupe G = (G, ·, 1).
Montrer l’équivalence des assertions suivantes :

(1) N ∩H = {1} et G = NH = {nh | n ∈ N,h ∈ H},
(2) la composée de l’inclusion H // //G avec le quotient G // //G/N est un isomorphisme,
(3) il existe un homomorphisme f : G→ H qui est l’identité sur H et dont N est le noyau,
(4) il y a une suite exacte courte scindée N G H

f
.

Dans ce cas, on dit que G est le produit semidirect de N et H, noté G = N ⋊H. Montrer que,
dans ce cas, l’application

Φ: N ×H → G : (n, h) 7→ nh

est un isomorphisme de groupes pour la loi de groupe

(n, h) · (n′, h′) := (n(hn′h−1), hh′)

(“tordue par une conjugaison”) sur son domaine. (Ainsi les extrémités d’une suite exacte courte
scindée déterminent le groupe au milieu !)

51



2.5. Exercices

Solution. Pour N ⊴ G et H ≤ G, notons le quotient q : G // //G/N : g 7→ [g] et l’inclusion
i : H // //G : h 7→ h. Pour la composée q ◦ i : H → G/N on a

ker(q ◦ i) = {h ∈ H | [h] = [1]} = N ∩H et im(q ◦ i) = {[h] | h ∈ H}.

Ainsi, q ◦ i est injectif si et seulement si N ∩ H = {1} ; et q ◦ i est surjectif si et seulement si
pour tout g ∈ G il existe un h ∈ H tel que [g] = [h], si et seulement si G = NH. Cela démontre
(1⇔ 2). Supposons maintenant la validité de (2), et posons f = (q ◦ i)−1 ◦ q : G→ H, alors

ker(f) = {g ∈ G | (q ◦ i)−1(q(g)) = 1} = {g ∈ G | q(g) = (q ◦ i)(1)}

= {g ∈ G | [g] = [1]} = G ∩N = N.

De plus, pour h ∈ H on a f(h) = (q◦i)−1(q(h)) = (q◦i)−1([h]) = h. Ainsi f est l’homomorphisme
demandé en (3). Réciproquement, un homomorphisme f : G → H de noyau ker(f) = N et tel
que la composée f ◦ i : H → H est l’identité, détermine un isomorphisme f : G/N → im(f) = H

satisfaisant à f ◦q = f (par la propriété universelle du quotient). On peut calculer que f ◦q ◦ i =
f ◦ i = idH donc q ◦ i = f

−1 est aussi un isomorphisme. Ainsi on obtient (2). L’équivalence
(3⇔ 4) est immédiate : c’est une question de terminologie. □

Exercice 2.5.6 (Images directe et réciproque). Soit une application linéaire f : V → W

entre espaces vectoriels. Montrer que l’image directe d’un sous-espace vectoriel de V est un
sous-espace vectoriel de W ; et montrer que l’image réciproque d’un sous-espace vectoriel de W
est un sous-espace vectoriel de V .

Exercice 2.5.7 (Espace isomorphe implique groupe linéaire isomorphe). Montrer que
tout isomorphisme d’espaces vectoriels V ∼= W (sur un même corps, donc) induit un isomor-
phisme de groupes GL(V ) ∼= GL(W ).

Exercice 2.5.8 (Réciproque du précédent). Soit un espace vectoriel V de dimension n ≥ 1.
Montrer que, pour toute base x1, ..., xn de V , il existe un unique f ∈ GL(V ) tel que f(xi) = xi

(et identifier cet unique élément). Montrer que, pour tout x1, ..., xk ∈ V avec k < n, il existe au
moins deux f, g ∈ GL(V ) tels que f(xi) = xi = g(xi). Conclure que GL(V ) “connaît” dim(V ),
et détermine ainsi V à isomorphisme près (si le corps K est donné). (Sur le corps F2, l’espace
nul à le même groupe linéaire que la droite ; mais bien sûr ces espaces ne sont pas isomorphes.)

Exercice 2.5.9 (Non-fonctorialité de GL). Montrer que V 7→ GL(V ) ne peut pas être l’ap-
plication d’objets d’un foncteur de la catégorie VecF2 à la catégorie des groupes. Indication : on
cherche à associer, de manière fonctorielle, à toute application linéaire f : V →W , un homomor-
phisme de groupes GL(f) : GL(V ) → GL(W ). Mais alors la rétraction r : F2

2 → F2 : (x, y) 7→ x

(de section s = (x, 0)) devrait induire une rétraction GL(F2
2) → GL(F2). Mais GL(F2

2) n’a pas
de sous-groupe normal non-trivial. (Plus généralement, pour tout K on peut montrer qu’il n’y
a pas de foncteur possible.)

Exercice 2.5.10 (Non-fonctorialité de Z). Montrer que G 7→ Z(G) ne peut pas être l’ap-
plication d’objets d’un foncteur de la catégorie des groupes à elle-même. Indication : si c’est un
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foncteur, alors la composée ⟨x⟩ → ⟨y, z⟩ → ⟨x⟩ entre groupes libres, déterminée par x 7→ y et
y, z 7→ x, est l’identité, s’envoie sur une composée Z⟨x⟩ → Z⟨y, z⟩ → Z⟨x⟩ qui doit aussi être
l’identité. Mais Z⟨x⟩ = ⟨x⟩ et Z⟨y, z⟩ = {1}, donc cette composée est l’homomorphisme nul, qui
est différent de l’homomorphisme identité.

Exercice 2.5.11 (Groupes de matrices). Rappeler la “description matricielle” d’une appli-
cation linéaire f : V → W , et par conséquent les isomorphismes GL(V ) ∼= GL(n,K), SL(V ) ∼=
SL(n,K) et H(V ) ∼= H(n,K).

Exercice 2.5.12 (Le groupe symétrique est linéaire). Montrer que Bij(X) est un groupe
linéaire (sur un corps quelconque) quand X est un ensemble fini. Indication : représenter une
bijection de {1, ..., n} par une matrice inversible n× n dont les éléments sont 0 ou 1.

Exercice 2.5.13 (Projection linéaire). Soit V un espace vectoriel. Montrer qu’un endomor-
phisme linéaire p : V → V satisfait à p ◦ p = p si et seulement s’il existe une décomposition
V = E ⊕ F telle que p(x) = xE (où x = xE + xF est l’unique façon d’écrire x ∈ V comme une
somme d’un élément de E et un élément de F ). On dit alors que p est la projection linéaire sur
E et de direction F . Que se passe-t-il si E = {0} ? si E = V ?

Exercice 2.5.14 (Symétrie linéaire). Soit V un espace vectoriel. Montrer qu’un endomor-
phisme linéaire s : V → V satisfait à s ◦ s = idV si et seulement s’il existe une décomposition
V = E ⊕ F telle que s(x) = xE − xF (où x = xE + xF est l’unique façon d’écrire x ∈ V comme
une somme d’un élément de E et un élément de F ). On dit alors que s est la symétrie linéaire
d’axe E et de direction F . Que se passe-t-il si E = {0} ? si E = V ?

Exercice 2.5.15 (Projection et symétrie linéaires). Soit V un espace vectoriel et supposons
que car(K) ̸= 2. Montrer : si p est une projection alors s = 2p− id est une symétrie ; si s est une
symétrie alors p = 1

2(s+ id) est une projection. Ainsi on a établi des bijections entre

{projections} ←→ {symétries} ←→ {décompositions}.

Montrer que toute symétrie est un élément de GL(V ). Est-ce un élément de SL(V ) ? Et les
projections ? (Et que se passe-t-il en caracteristique 2 ?)

Exercice 2.5.16 (Matrices de projections et symétries linéaires). Montrer que p : V → V

est une projection linéaire d’un espace vectoriel si et seulement s’il existe une base de V pour
laquelle la matrice de P est une matrice diagonale n’ayant que des 1 et des 0 sur sa diagonale.
Montrer que s : V → V est une symétrie linéaire si et seulement s’il existe une base de V pour
laquelle la matrice de s est une matrice diagonale n’ayant que des 1 et des −1 sur sa diagonale.

Exercice 2.5.17 (Généralisation du précédent : affinités linéaires). Soit V un espace
vectoriel. Montrer qu’une application linéaire f : V → V est diagonalisable ayant deux valeurs
propres si et seulement s’il existe une décomposition V = E⊕F et des scalaires λ, µ ∈ K tel que
f(x) = λxE + µxF (où x = xE + xF est l’unique façon d’écrire x ∈ V comme une somme d’un
élément de E et un élément de F ). Lorsque λ = 1, on dit que f est une affinité linéaire sur E (ou
d’axe E, ou de base E), de direction F , et de rapport µ. Montrer que les projections, les symétries
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et les homothéties sont des affinités linéaires. (Dans certaines références, le mot “dilatation” est
utilisé pour une affinité linéaire dont la direction est de dimension 1. Ce n’est pas notre choix
dans ce cours, une dilatation étant pour nous un élément du groupe D(V ) = T (V ) ⋊H(V ).)

Exercice 2.5.18 (Scinder le déterminant). Ayant choisie une base {e1, ..., en} d’un espace
vectoriel V , on peut définir s : K× → GL(V ) par s(α)(e1) = αe1 et s(ei) = ei pour i ̸= 1. Au
niveau matriciel, cela revient à définir s′ : K× → GL(n,K) en envoyant α ∈ K× à la matrice

α

1
. . .

1


(et on remplit avec des 0). Montrer qu’on a alors un diagramme commutatif des suite exactes
courtes scindées de groupes,

SL(V ) // //

��

GL(V )

��

det
// // K×

soo

SL(n,K) // // GL(n,K)
det
// // K×

s′
oo

dont les flèches verticales sont des isomorphismes. Conclure que GL(V ) = SL(V )⋊s(K×) (pour
toute section s) ; et de même au niveau matriciel.

Exercice 2.5.19 (Scindage d’une suite exacte courte). Soit V un espace vectoriel de
dimension n et H(V ) son groupe d’homothéties. Par composition de l’homomorphisme surjectif
det : GL(V )→ K× avec l’isomorphisme hom: K× → H(V )→ K× : λ 7→ λid, on produit la suite
exacte courte

SL(V ) // // GL(V ) hom ◦ det // // H(V ) .

Montrer que cette suite est scindée par l’inclusion de H(V ) dans GL(V ) si et seulement si
l’application K× → K× : α 7→ αn est un homomorphisme de groupes. En déduire que, dans
ce cas, GL(V ) = SL(V ) ⋊ H(V ). Est-ce le cas pour K = R ? K = C ? K = Fp ? (Répondre
éventuellement par une condition sur la dimension de V .)

Exercice 2.5.20 (Centre du groupe linéaire spécial). Soit un espace vectoriel V de di-
mension n. Montrer que Z(SL(V )) = SL(V )∩H(V ) (observer que dans la démonstration pour
déterminer Z(GL(V )) on a utilisé des éléments de SL(V )). En déduire que Z(SL(V )) est iso-
morphe au sous-groupe de K× des racines n-ièmes de l’unité.

Exercice 2.5.21 (Image d’un sous-espace affine engendré). Soit une application affine
g : V →W entre espaces vectoriels. Montrer que, pour tout {a0, ..., ak}, l’image par g de l’espace
affine engendré ⟨a0, ..., ak⟩ est l’espace affine engendré ⟨ga0, ..., gak⟩. En déduire une démonstra-
tion alternative pour la Proposition 2.2.10.

Exercice 2.5.22 (Linéaire parmi affine). Montrer que g ∈ GA(V ) est dans le sous-groupe
GL(V ) ⊆ GA(V ) si et seulement si g0 = 0.
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Exercice 2.5.23 (Expression matricielle d’une application affine). Soient deux espaces
vectoriels V et W , munis de bases vectorielles {e1, ..., en}, resp. {d1, ..., dm}. Donner l’expression
matricielle d’une application affine g = tf : V → W par rapport à ces bases. (Faire séparément
la partie linéaire f : V →W et la translation t = tb : W →W , puis composer.)

Exercice 2.5.24 (Déterminer une application affine). Pour les applications suivantes,
déterminer si ce sont des applications affines. Si c’est le cas, les écrire sous la forme g = t ◦ f
avec t une translation et f une application linéaire. Identifier les automorphismes affines.

1. g : R2 → R2 :
(
x

y

)
7→
(
−y + 1

−2x− y + 2

)

2. g : R2 → R2 :
(
x

y

)
7→
(

4x− 2y − 3
−6x+ 3y − 6

)

3. g : R2 → R2 :
(
x

y

)
7→
(
−x− y + 2
x− y − 1

)

4. g : R2 → R2 :
(
x

y

)
7→
(

3y + 5
3x− 2

)

5. g : R2 → R3 :
(
x

y

)
7→


3y + 5
3x− 2
3x+ 1



6. g : R3 → R2 :


x

y

z

 7→
(
−2x+ y + z + 1
x+ y − 2z − 1

)

7. g : R3 → R3 :


x

y

z

 7→

−2x+ y + z + 1
x− 2y + z + 1
x+ y − 2z − 1


8. g : V → V : x 7→ a, pour un point a ∈ V fixé.

9. g : V → V : x 7→ (milieu de ax), pour un point a ∈ V fixé.

10. g : V → V : x 7→ (barycentre de (a, 1
4), (b1

2), (x, 1
4)), pour deux points a, b ∈ V fixés.

Exercice 2.5.25 (Trouver une application affine). Les informations ci-dessous permettent-
elles de déterminer une (unique) application affine g = t ◦ f ? Si oui, donner sa description
matricielle.

1. g : R2 → R2, g(0, 1) = (0, 1) et g n’a pas d’autre point fixe.

2. g : R3 → R3, g(0, 1, 0) = (0, 2, 0) et g n’a aucun point fixe.

3. g : R2 → R2, les seuls points fixes de g sont (0, 0) et (1, 1).

4. g : R2 → R2, g(0, 0) = (1, 3), g(1, 3) = (3, 1), g(3, 1) = (0, 0).

5. g : R3 → R3, g(0, 0, 0) = (1, 2, 3), g(0, 1, 2) = (1, 4, 6), g(1, 0, 2) = (1, 3, 5).

Exercice 2.5.26 (Le groupe affine—description matricielle). Soit un espace vectoriel V
(sur un corps K) muni d’une base {e1, ..., en}. Utiliser les isomorphismes de groupes GA(V ) ∼=
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T (V )⋊GL(V ) ∼= V ⋊GL(V ) pour montrer l’isomorphisme de GA(V ) avec le groupe donné par
l’ensemble

{(A, b) | A ∈ GL(n,K), b ∈ Kn×1}

muni de l’opération binaire (A′, b′) ∗ (A, b) = (A′A,A′b+ b′). On note ce groupe GA(n,K).

Exercice 2.5.27 (Le groupe affine est linéaire). Montrer que l’ensemble des matrices de la
forme (

A b

O 1

)

avec A ∈ GL(n,K), b ∈ Kn×1, et O = (0 · · · 0) ∈ K1×n, est un sous-groupe de GL(n + 1,K),
isomorphe au groupe GA(n,K) de l’exercice précédent. Ainsi on a des sous-groupes GL(n,K) ≤
GA(n,K) ≤ GL(n+ 1,K).

Exercice 2.5.28 (Le groupe affine est linéaire—bis). Dans Kn+1, fixons l’hyperplan affine
H = {(x1, ..., xn, 1) ∈ Kn+1}. Soit l’isomorphisme GL(Kn+1) ∼= GL(n+ 1,K) déterminé par la
base canonique de Kn+1. A quel sous-groupe de matrices s’identifie alors le sous-groupe laissant
(globalement) invariant l’hyperplan H ? Indication : écrire f ∈ GL(Kn+1) comme

f

(
x

xn+1

)
=
(
A b

c d

)(
x

xn+1

)
=
(
Ax+ bxn+1

cx+ dxn+1

)

où A ∈ Kn×n, x ∈ Kn×1, b ∈ Kn×1, c ∈ K1×n et d ∈ K. Exprimer que tout (x1, ..., xn, 1) est
envoyé sur un (y1, ..., yn, 1), et en déduire que c = O et d = 1.

Exercice 2.5.29 (GA(n,K) est un sous-groupe de PGL(n+ 1,K)). On reprend le résultat
d’un exercice précédent : on considère le groupe affine (“version matricielle”) GA(n,K) comme
sous-groupe de GL(n+ 1,K) des matrices de la forme(

A b

O 1

)
.

Calculer l’intersection avec le centre H(n+ 1,K) = Z(GL(n+ 1,K)), et conclure que GA(n,K)
est aussi un sous-groupe du quotient GL(n + 1,K)/H(n + 1,K). Ce dernier est la “version
matricielle” du groupe projectif linéaire général (en dimension n+ 1), noté PGL(n+ 1,K).

Exercice 2.5.30 (Sous-groupes du groupe affine). Soit un espace vectoriel V etG ≤ GL(V )
un sous-groupe donné (autrement dit, G est un groupe linéaire). Montrer que T (V )⋊G := {g =
t ◦ f | t ∈ T (V ), f ∈ G} est un sous-groupe de GA(V ) = T (V ) ⋊ GL(V ). Observer que l’on a
une “sous-suite” exacte courte scindée (par l’inclusion évidente)

T (V ) T (V ) ⋊G G

T (V ) GA(V ) GL(V )

Observer que T (V )⋊G est un groupe linéaire (attention aux dimensions !). Repérer les exemples
de cette construction générale dans le cours (voir aussi les exercices ci-dessous).
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Exercice 2.5.31 (Groupe affine spécial). Soit un espace vectoriel V de dimension n sur un
corps K. Pour le groupe linéaire spécial SL(V ) ≤ GL(V ), décrire explicitement les éléments du
groupe affine spécial de V , défini par SA(V ) := T (V ) ⋊ SL(V ). En donner une description par
des matrices n× n, ainsi qu’une description par des matrices (n+ 1)× (n+ 1).

Exercice 2.5.32 (Groupe des dilatations). Soit un espace vectoriel V de dimension n sur
un corps K. Pour le groupe des homothéties H(V ) ≤ GL(V ), décrire explicitement les éléments
du groupe des dilatations de V , défini par D(V ) := T (V ) ⋊ H(V ). En donner une description
par des matrices n× n, ainsi qu’une description par des matrices (n+ 1)× (n+ 1).

Exercice 2.5.33 (Groupe des symétries centrales affines). Soit un espace vectoriel V
de dimension n sur un corps K de caractéristique ̸= 2. Déterminer le sous-groupe G ≤ GL(V )
engendré par la symétrie centrale linéaire σ : V → V : x 7→ −x. Montrer que c’est un sous-groupe
du groupe H(V ) des homothéties linéaires. Est-ce un sous-groupe de SL(V ) ? Décrire ensuite
explicitement les éléments du groupe des symétries centrales affines de V , défini par T (V ) ⋊G.
En donner une description par des matrices n × n, ainsi qu’une description par des matrices
(n+ 1)× (n+ 1). Montrer que c’est un sous-groupe de D(V ). Est-ce un sous-groupe de SA(V ) ?

Exercice 2.5.34 (Points fixes (1)). Montrer que a ∈ V est un point fixe d’un endomorphisme
affine g : V → V si et seulement s’il existe un endomorphisme linéaire f : V → V tel que
g = taft−a. Montrer que l’ensemble des automorphismes affines de V ayant a ∈ V comme point
fixe est un sous-groupe de GA(V ).

Exercice 2.5.35 (Points fixes (2)). Soit un endomorphisme affine g : V → V . Montrer que
l’ensemble des points fixes de g = t ◦ f est un sous-espace affine, dont la direction est l’ensemble
des points fixes de f .

Exercice 2.5.36 (Conjugués et commutants d’une translation). Etant donné une trans-
lation t ∈ T (V ) ⊆ GA(V ), décrire ses conjugués (gtg−1) et ses commutants (gt = tg) dans
GA(V ).

Exercice 2.5.37 (Commutation de dilatations). Montrer que deux dilatations g, g′ ∈ D(V )
commutent si et seulement si, soit l’une est l’identité, soit ce sont deux translations, soit ce sont
deux homothéties affines de même centre.

Exercice 2.5.38 (Homothéties linéaires et affines). Montrer que f ∈ GL(V ) est une
homothétie (linéaire) si et seulement si f envoie toute droite vectorielle sur elle-même. Montrer
que g ∈ GA(V ) est une homothétie (affine) de centre c si et seulement si g fixe le point c et g
envoie toute toute droite affine passant par c sur elle-même. (Si dim(V ) ≥ 2 alors la condition
que g fixe le point c suit de la condition que g envoie toute toute droite affine passant par c sur
elle-même : il suffit de considérer deux droites distinctes passant par c.)

Exercice 2.5.39 (Homothéties affines de même centre). Montrer que l’ensemble des
homothéties affines ayant un même centre est un sous-groupe commutatif de D(V ).
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Exercice 2.5.40 (Groupe affine d’une droite). Montrer que, si V est un espace vectoriel
de dimension 1, alors GA(V ) = D(V ) : les seules automorphismes affines d’une droite sont les
translations et les homothéties affines.

Exercice 2.5.41 (Déterminer une homothétie). Soient deux points a ̸= b dans un espace
vectoriel V sur un corps K. Montrer que, pour tout κ ∈ K \ {0, 1}, il existe une et une seule
homothétie affine de rapport κ envoyant a sur b, et déterminer son centre. (Quel est le problème
pour κ ∈ {0, 1} ?) Spécifier la situation lorsque κ = −1.

Exercice 2.5.42 (Centre du groupe affine). Montrer que, si h : G → H est un homomor-
phisme surjectif de groupes, alors h(Z(G)) = Z(H). En déduire que, si g ∈ Z(GA(V )) alors
g ∈ D(V ) ; on peut donc écrire gx = λx+ a pour a ∈ V et λ ∈ K×. On suppose désormais que
K ̸= F2. Montrer qu’un tel g commute avec toutes les translations et toutes les homothéties si
et seulement si g = id. Conclure que Z(GA(V )) = {id}. (Que se passe-t-il pour K = F2 ?)

Solution. Soit gx = λx + a pour a ∈ V et λ ∈ K×. Pour tout b ∈ V , on doit avoir gtb = tbg,
donc en particulier gtb0 = tbg0 = a + b, mais aussi gtb0 = gb = λb + a ; il suit donc que λ = 1.
Ensuite, supposant que g = ta ∈ T (V ) commute avec une homothétie h = µid (avec µ ̸= 1), on
a en particulier a = gh0 = hg0 = µa, et donc a = 0. Ainsi g = t0 = id. □

Exercice 2.5.43 (Applications affines et rapports). Montrer qu’une application g : V →W

entre espaces vectoriels sur un corps K est affine si et seulement si elle préserve l’alignement et
le rapport de tout triplet de points.

Exercice 2.5.44 (Théorème fondamental de la géométrie affine réelle). On peut mon-
trer que, si V est un espace vectoriel de dimension n ≥ 2 sur le corps K = R, alors une bijection
g : V → V est un automorphisme affine si et seulement si g envoie tout triplet de points alignés
sur un triplet de points alignés. Une démonstration (un peu longue mais élémentaire) se trouve
dans les références.

Exercice 2.5.45 (Image d’un parallélogramme). Montrer que l’image par une applica-
tion affine injective d’un parallélogramme est toujours un parallélogramme. Et si l’application
n’est pas injective ? L’image d’un quadrilatère non-parallélogramme peut-elle être un parallélo-
gramme ?

Exercice 2.5.46 (Une composée de symétries centrales affines). Soit un triangle non-
applati abc dans un espace affine sur un corps K tel que car(K) ̸= 2, et notons les milieux a′ de
bc, b′ de ac et c′ de ab.

b

a′

c

a

b′

c′

Notons par sp la la symétrie centrale affine de centre p, c’est à dire l’homothétie de centre p et
rapport −1. Déterminer alors sb′ ◦ sa′ et sc′ ◦ sb′ ◦ sa′ .
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Exercice 2.5.47 (Retourner un triangle). Soit un triangle abc dans un plan affine sur un
corps tel que car(K) ̸∈ {2, 3}, et notons g son isobarycentre ; par un exercice précédent, g est
donc aussi l’isobarycentre du triangle a′b′c′ dont les sommets sont les milieux des segments bc, ca
et ab. Montrer que l’automorphisme affine déterminé par abc 7→ a′b′c′ est l’homothétie de centre
g et rapport −1

2 . Montrer que, réciproquement, les sommets d’un triangle abc sont toujours les
milieux des côtés d’un unique autre triangle a′′b′′c′′. En déduire que les côtés des deux triangles
ainsi emboîtés sont 2-à-2 parallèles.

b

a′

c

a

b′

c′

c

a b

c′′

a′′

b′′

Exercice 2.5.48 (Axiome de Desargues—application). Tracer ci-dessous la droite passant
par le point donné et concourante avec les deux droites données (et bien sûr le point d’intersection
de ces trois droites se trouve “en dehors” de la page) :

Exercice 2.5.49 (Projection et symétrie affines). Soit un espace vectoriel V , et A,B ∈
V deux sous-espaces affines supplémentaires ; ainsi on a (par définition) que V = A0 ⊕ B0,
et l’intersection de A et B est (nécessairement) un singleton, soit {c} = A ∩ B. On définit
l’application affine

g = tc ◦ f ◦ t−c

où f : V → V est la projection, resp. la symétrie, linéaire d’axe A0 et de direction B0 (voir un
exercice précédent). On dit alors que g est la projection (resp. symétrie) affine d’axe A et de
direction B. Voici une illustration d’une projection affine et d’une symétrie affine dans un plan
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affine :

x

c

A

B

0 A0

B0
g(x)

x

c

g(x)

A

B

0 A0

B0

Montrer qu’une application affine g : V → V est une projection affine si et seulement si g ◦g = g,
si et seulement si g admet au moins un point fixe et sa partie linéaire est une projection linéaire,
si et seulement si g = ta ◦f avec f ◦f = f et fa = 0 (et indiquer alors l’axe et la direction de g).
Montrer qu’une application affine g : V → V est une symétrie affine si et seulement si g ◦ g = id,
si et seulement si g admet au moins un point fixe et sa partie linéaire est une symétrie linéaire,
si et seulement si g = ta ◦ f avec f ◦ f = id et fa = −a (et indiquer l’axe et la direction de g).

Solution. On donne l’argument pour les projections ; l’argument pour les symétries est similaire.
Si on pose g = tc ◦ f ◦ t−c avec f une projection linéaire, alors g est une application affine fixant
le point c et telle que g ◦ g = (tc ◦ f ◦ t−c) ◦ (tc ◦ f ◦ t−c) = tc ◦ f ◦ f ◦ t−c = tc ◦ f ◦ t−c = g car
f ◦ f = f (voir un exercice précédent). Réciproquement, pour une application affine g = ta ◦ f
on a g ◦g = g si et seulement si (ta ◦f)◦ (ta ◦f) = ta ◦f , si et seulement si ta+fa ◦ (f ◦f) = ta ◦f ,
si et seulement si a+ fa = a et f ◦ f = f , si et seulement si f est une projection linéaire (voir
un exercice précédent) et fa = 0. On peut alors écrire g = ta ◦ f ◦ t−a, montrant que g fixe le
point a. L’axe et la direction de g sont alors A = im(f) + a et B = ker(f) (ou toute autre droite
affine parallèle à B). □

Exercice 2.5.50 (Projection affine—bis). Soit un espace vectoriel V , et A,B ∈ V deux
sous-espaces affines supplémentaires. Montrer que la projection affine sur A de direction B est
exactement l’application p : V → V qui envoie x ∈ V sur l’unique point d’intersection de A
avec l’unique sous-espace affine parallèle à B et passant par x. (Noter que seule la direction du
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sous-espace affine B est importante !)

x

p(x)

B

A
x

p(x)

B

A

Voici-dessus deux illustrations dans un espace (réel) à trois dimensions : on projète sur un plan
parallèlement à une droite, ou on projète sur une droite parallèlement à un plan.

Solution. Supposons d’abord que A et B sont des sous-espaces vectoriels supplémentaires de V .
Pour un point x ∈ V on a donc une unique décomposition x = xA + xB et la projection linéaire
d’axe A et direction B est p(x) = xA. Mais xA = x− xB est à la fois un élément du sous-espace
vectoriel A et du sous-espace affine B + x (car −xB ∈ B). Ainsi, xA est également l’unique
point d’intersection de A et B + x. Supposons maintenant que A et B sont des sous-espaces
affines supplémentaires de V ; notons c leur unique point d’intersection, ainsi on a B = B0 + c

et A = A0 + c. Pour un point x on calcule maintenant l’intersection du sous-espace A avec le
sous-espace parallèle à B et passant par x, en utilisant que la translation par c est bijective et
preserve donc les intersections :

A ∩ (B0 + x) = (A0 + c) ∩ (B0 + (x− c) + c) = (A0 ∩ (B0 + (x− c))) + c.

Ainsi on voit que cette intersection contient un unique point, à savoir tc(p0(t−c(x)) où p0 est la
projection linéaire d’axe A0 et de direction B0. Autrement dit, p = tc ◦ p0 ◦ t−c est bel et bien
la projection affine d’axe A et direction B. □

Exercice 2.5.51 (Symétrie affine—bis). Soit un espace vectoriel V sur un corps K de
caractéristique différent de 2, et A,B ∈ V deux sous-espaces affines supplémentaires. Montrer
que la symétrie affine d’axe A et de direction B est exactement l’application s : V → V qui
envoie x ∈ V sur l’unique point x′ ∈ V tel que la projection affine (sur A et de direction B) de
x est le milieu de x et x′. Autrement dit, si x ∈ A alors x′ = x et si x ̸∈ A alors l’unique point
d’intersection de xx′ avec A est le milieu de x et x′. (Ici aussi, seule la direction du sous-espace
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affine B est importante !) Voici une illustration dans le plan affine réel :

x

x′

1
2x+ 1

2x
′
A

B

Exercice 2.5.52 (Projections dans un triangle). Soit un triangle non-aplati abc dans un
plan affine, et notons p1 la projection sur bc parallèlement à ca, p2 la projection sur ca parallè-
lement à ab, et p3 la projection sur ab parallèlement à bc. Pour p = p3 ◦ p2 ◦ p1, calculer p(a) et
p(b). Que peut-on alors dire de p(x) et (p ◦ p)(x) pour x ∈ ab ?

c

x
b

a

p(x)

Exercice 2.5.53 (Thales—avec rapports). Reformuler et démontrer le Théorème de Thales
dans le plan affine à l’aide de rapports et de la projection affine sur ca de direction ab.

a a′c

b

b′

Exercice 2.5.54 (Ceva “parallèle”—avec rapports). Démontrer la partie “parallèle” du
Théorème de Ceva dans le plan affine à l’aide de la projection affine sur ab de direction ax.

a

b
z

c

x
y
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Exercice 2.5.55 (Théorème de Thales—généralisation). Soient trois hyperplans parallèles
H1, H2 et H3 d’un espace vectoriel V , et deux droites D et D′ intersectant ces hyperplans aux
points a1, a2, a3, resp. a′

1, a′
2, a′

3. Utiliser la projection affine sur D de direction H1 pour
formuler et démontrer une généralisation du Théorème de Thales. (On retrouve le théorème
usuel lorsqu’on suppose que a1 = a′

1.)

a′
1

a1

a′
2

a2

a′
3

a3

Exercice 2.5.56 (Démonstration du Théorème de Desargues). Pour démontrer le Théo-
rème de Desargues dans un plan affine, déssinons la configuration de Desargues comme suit :

r s

a′

b′

x

a
c

b

t

c′

On veut montrer que les triangles abc et a′b′c′ sont en perspective centrale (aa′∩bb′∩cc′ = {x}) si
et seulement s’ils sont en perspective axiale (r ∈ st). On le fera sous l’hypothèse supplémentaire
que “rien n’est parallèle”, comme suit.

On suppose d’abord que les triangles abc et a′b′c′ sont en perspective centrale, et que les
côtés respectifs s’intersectent en r, s et t (donc pas de parallélisme). Appliquer le Théorème de
Menelaos (avec les rapports) aux trois premiers triangles ci-dessous pour conclure que r ∈ st
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par le quatrième triangle :

s
b′

c′

x

c
b

r

a′

b′

x

a
b

a′

x

c a

t

c′

r s

ac

t

b

Réciproquement, supposons que abc et a′b′c′ sont en perspective axiale et que bb′ ∩ cc′ = {x}
(donc pas de parallélisme). Considérer les triangles tcc′ et rbb′, qui sont alors en perspective
centrale (de s), et conclure par la première partie.

r s

a′

b′

x

a
c

b

t

c′

(Lorsqu’il y a parallélisme, on peut trouver une démonstration adaptée pour chaque situation.)

Exercice 2.5.57 (Démonstration du Théorème de Pappus—hexagonal). On va démon-
trer le Théorème de Pappus sous l’hypothèse supplémentaire “qu’il n’y a pas de parallélisme”
entre les côtés de l’hexagone. C’est à dire, on considère un hexagone (avec les notations du
Théorème 2.4.9) tel que, en plus, {p} = a′b ∩ b′c, {q} = ac′ ∩ b′c et {r} = a′b ∩ b′c existent :

a b c

x

yp

r

a′
b′

c′

z

q

64



2. Applications affines

Appliquer le Théorème de Menelaos (avec rapports) cinq fois au triangle pqr, comme suggéré
par les cinq premiers dessins

c

a′

p

r

z

q

a

p

r

x

b′

q

b

r

p

q

c′

y

p

r

a′
b′

c′

q

b

r

a

p

q

c

p

r

x z

q

y

puis conclure que x ∈ yz par le sixième triangle. (On peut donner des démonstrations adaptées
lorsqu’il y a parallélisme de côtés.)

Exercice 2.5.58 (Division harmonique). Dans un espace affine, soit une droite ab et deux
points c, d ∈ ab qui ne sont pas le milieu de ab. Montrer que a−c

b−c = −a−d
b−d si et seulement

si, lorsque c est le barycentre de (a, α) et (b, β), alors d est le barycentre de (a,−α) et (b, β).
(Pourquoi doit-on supposer que c et d ne sont pas le milieu de ab ?)

a

b
c

d

On dit alors que a, b, c, d sont en division harmonique, ou encore que c et d divisent harmoni-
quement le segment ab, ou encore que d est le point conjugé harmonique de c par rapport à ab.
Ecrire cette definition en termes de homothéties (de centres c et d). Montrer que l’image d’une
division harmonique par une application affine est toujours une division harmonique.

Exercice 2.5.59 (Birapport). Pour quatre points a, b, c, d d’un espace affine sur un corps K,
on définit leur birapport (anglais : cross-ratio) comme le “rapport des rapports” :

[a, b; c, d] :=

a− c
b− c
a− d
b− d

∈ K.
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2.5. Exercices

Ainsi, on a une division harmonique lorsque [a, b; c, d] = −1. Quand a-t-on que [a, b; c, d] = 1 ?
Montrer que toute application affine préserve les birapports. Calculer le birapport quand on
connait les coordonnées barycentriques de c et d par rapport à {a, b}. Comment change le
birapport sous les diverses permutations de a, b, c et d ?

Exercice 2.5.60 (Quadrilatère complet et division harmonique). Soit un quadrilatère
complèt dans un espace affine (que l’on considère comme la donnée de quatre droites et six som-
mets). Montrer que chaque diagonale coupe les deux autres diagonales et déduire des théorèmes
de Menelaos et Ceva que les deux points d’intersection divisent harmoniquement le segment
défini par les deux sommets de passage.

Indication : appliquer les théorèmes de Menelaos et Ceva dans les situations suivantes :

Par ailleurs, étant donné trois points sur un segment, on peut construire le quatrième point
d’une division harmonique en construisant un quadrilatère complet adéquat.

Exercice 2.5.61 (Birapport—un lemme). Supposons que, dans un espace affine, deux
droites concourrantes coupent trois droites concourrantes :

a

b

d

c

d′

b′

c′

p
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2. Applications affines

Appliquer deux fois le Théorème de Menelaos (et permuter au besoin les points dans les birap-
ports) pour vérifier que [a, b; c, d] = [a, b′; c′, d′].

Exercice 2.5.62 (Birapport de droites concourrantes). Montrer que, lorsque une droite
affine coupe quatre droites affines concourrantes, alors le birapport des quatre points d’intersec-
tions ne dépend pas de la droite sécante choisie :

a b c d

p

a′ b′ c′ d′

a b c d

p

(Appliquer deux fois le résultat de l’exercice précédent, comme suggéré par le deuxième dessin.)
Les birapports sont utilisés en géométrie projective, car (comme le suggère ce résultat) ils sont
préservés par les projections centrales (qui ne préservent pas les rapports !). Ces résultats sont
centraux dans les formidables livres de Pappos d’Alexandrie (290–350), voir aussi [Pappus of
Alexandria, Book 7 of the Collection. Ed., with transl. and comment. by Alexander Jones,
Sources in the History of Mathematics and Physical Sciences 8, Springer-Verlag (1986)].

Exercice 2.5.63 (Convexité et demi-espaces). Soit V un espace affine réel. Pour deux points
a, b ∈ V , on définit le segment [ab] = {αa + βb | 0 ≤ α, β ≤ 1}, et on dit qu’un sous-ensemble
X ⊆ V est convexe si, pour tout a, b ∈ X, aussi [ab] ⊆ X. Soit maintenant un hyperplan affine
H ∈ V ; on peut supposer que, par rapport à une base e1, ..., en de V , l’hyperplan est d’équation
cartésienne xn = t. Toujours par rapport à cette base, définissons maintenant

H+ = {x ∈ V | xn > t} et H− = {x ∈ V | xn < t}.

Montrer que V = H+ ⊎H ⊎H− est une partition (ensembliste) en parties convexes telle que,
pour tout a ∈ H+ et b ∈ H−, le segment [ab] contient exactement un point dans H. Ainsi on
peut conclure que tout hyperplan affine H détermine des uniques demi-espaces H+ et H−.

Exercice 2.5.64 (Théorème de Pasch). Soit un triangle abc dans un plan affine réel V . Le
périmètre de abc est, par définition, [ab] ∪ [bc] ∪ [ca]. Montrer que toute droite affine D ⊆ V

intersectant le périmètre de abc mais ne contenant aucun sommet de abc, intersecte le périmètre
en exactement deux points. Indication : les hypothèses assurent que exactement deux sommets
du triangle se trouvent dans un même demi-espace déterminé par D.
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3. Isométries

3.1. Le groupe euclidien

L’espace vectoriel réel R2 est muni du produit scalaire “usuel”,

(x1, x2) · (y1, y2) = x1y1 + x2y2,

qui permet d’exprimer la notion de distance euclidienne entre deux points :

dist((x1, x2), (y1, y2)) = ∥(x1, x2)− (y1, y2)∥ où ∥(x1, x2)∥ =
√

(x1, x2) · (x1, x2).

C’est dans ce plan euclidien que nous avons démontré, dans le cours de Géométrie en L2,
plusieurs résultats classiques de la géométrie euclidienne plane. Pour situer ces notions dans le
cadre plus général de la géométrie affine, définissons :

Définition 3.1.1. Un espace euclidien est un espace vectoriel réel V , de dimension finie, muni
d’un produit scalaire (= forme bilinéaire, symétrique, définie, positive).

Dans un espace euclidien V , lorsqu’il n’y a pas de confusion possible, on écrira x · y pour le
produit scalaire de x, y ∈ V . (Dans les références on peut rencontrer d’autes notations : b(x, y),
⟨x|y⟩, ...)

Définition 3.1.2. Dans un espace euclidien V on définit :

– la norme de x : ∥x∥ =
√
x · x,

– la distance de x à y : dist(x, y) = ∥x− y∥,

– l’angle (non-orienté 1) entre deux vecteurs non-nuls x et y : θ = arccos( x · y
∥x∥∥y∥

),

– l’orthogonalité de deux vecteurs x et y : x ⊥ y si et seulement si x · y = 0.

Rappelons que tout espace euclidien V admet (au moins) une base orthonormale {e1, ..., en},
c’est à dire, une base dont chaque vecteur est de norme 1 et tout vecteur est orthogonal à tout
autre vecteur. (On peut appliquer le procédé d’orthonormalisation de Gram-Schmidt à une base
quelconque de V pour trouver une base orthonormale.) Rappelons aussi que deux sous-espaces
vectoriels E,F ⊆ V sont dits orthogonaux si x ⊥ y pour tout x ∈ E et y ∈ F . Par ailleurs, tout
sous-espace vectoriel E ⊆ V a un unique orthocomplément E⊥, et on a E ⊕ E⊥ = V .

1. Rappelons qu’en effet −1 ≤ x·y
∥x∥∥y∥ ≤ 1 pour tout x, y dans V \ {0}, donc θ est bien défini par la fonction

arccos : [−1, 1] → [0, π]. Dans R2 muni du produit scalaire usuel, il s’agit de l’angle formé par les demi-droites R+x

et R+y au point (0, 0). Le scalaire θ ne change pas lorsqu’on permute x et y, ce qui explique l’adjectif non-orienté.
Voir aussi les exercices.
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3.1. Le groupe euclidien

Puisqu’un espace euclidien V est un espace métrique pour la distance dist(x, y) = ∥x − y∥,
il est naturel d’étudier les applications qui préservent les distances 2.

Définition 3.1.3. Soient des espaces vectoriels euclidiens V et W . Une application g : V →W

est isométrique si pour tout x, y ∈ V on a dist(gx, gy) = dist(x, y).

Il est évident que la composée de deux applications isométriques f : V → W et g : W → Z est
une application isométrique gf : V → Z ; cette composition est associative et les applications
identité id : V → V en sont des neutres. Ainsi on obtient une catégorie Eucl ayant pour objets
les espaces vectoriels euclidiens, et pour morphismes les applications isométriques.

Mine de rien, le fait de préserver toutes les distances est une condition très forte sur une
application :

Lemme 3.1.4. Soient des espaces vectoriels euclidiens V et W . Toute application isométrique
g : V →W est injective.

Démonstration. Si gx = gy alors 0 = ∥gx− gy∥ = ∥x− y∥ donc x = y. □

Lemme 3.1.5. Soit V un espace euclidien. Toute translation t : V → V est isométrique.

Démonstration. Soit tx = x+ a alors on a ∥tx− ty∥ = ∥(x+ a)− (y + a)∥ = ∥x− y∥. □

Lemme 3.1.6. Soient V et W des espaces vectoriels euclidiens. Toute application isométrique
f : V → W préservant le vecteur nul (f0 = 0) préserve aussi le produit scalaire (pour tout
x, y ∈ V on a fx · fy = x · y).

Démonstration. Avec les hypothèses on a ∥fx∥ = ∥fx− 0∥ = ∥fx− f0∥ = ∥x− 0∥ = ∥x∥. Puis
on vérifie que ∥fx− fy∥2 = ∥x− y∥2 implique −2(fx · fy) = −2(x · y), d’où la conclusion. □

Lemme 3.1.7. Soient V et W des espaces vectoriels euclidiens. Toute application f : V → W

préservant le produit scalaire est linéaire.

Démonstration. Avec l’hypothèse on vérifie que

∥f(x+ y)− (fx+ fy)∥2

= (f(x+ y)− (fx+ fy)) · (f(x+ y)− (fx+ fy))

= f(x+ y) · f(x+ y) + fx · fx+ fy · fy − 2f(x+ y) · fx− 2f(x+ y) · fy + 2fx · fy

= (x+ y) · (x+ y) + x · x+ y · y − 2(x+ y) · x− 2(x+ y) · y + 2x · y

= 0

et donc f(x+ y) = fx+ fy. De même, on a ∥f(αx)− α(fx)∥2 = 0, d’où f(αx) = α(fx). □

Proposition 3.1.8. Soient V et W des espaces vectoriels euclidiens. Toute application isomé-
trique g : V →W est une application affine injective.

2. A part les applications isométriques, il y a d’autres classes d’applications “naturelles” entre espaces
métriques—voir le cours de Topologie !
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3. Isométries

Démonstration. Notons a = g0 ∈W , alors l’application f = t−ag : V →W est isométrique (car
c’est la composée de deux applications isométriques) et préserve 0 ; c’est donc une application
linéaire (par les lemmes précédents), ce qui veut dire que g = tf est une application affine.
L’injectivité a été montré dans un lemme. □

Autrement dit, Eucl est une sous-catégorie de AffR dont tous les morphismes sont des monomor-
phismes. (Mais, bien sûr, il existe des applications affines injectives qui ne sont pas isométriques !)

Nous savons déjà que toute application affine g : V →W s’écrit, de manière unique, comme
la composée g = t ◦ f d’une application linéaire f : V → W et une translation t : W → W .
Clairement, si g est isométrique, alors aussi f = t−1 ◦ g l’est ; et réciproquement, si f est
isométrique, alors aussi g = t ◦ f l’est. Ainsi on obtient :

Théorème 3.1.9. Soient V et W des espaces vectoriels euclidiens. Une application g : V →W

est isométrique si et seulement s’il existe une unique application linéaire isométrique f : V →W

et unique translation t : W →W telles que g = tf .

Il suit par le Théorème du Rang que toute application (affine/linéaire) isométrique V → V est
bijective 3 : on l’appelle alors une isométrie 4 (affine/linéaire) de V . Ainsi, pour g = tf ∈ GA(V )
avec t ∈ T (V ) et f ∈ GL(V ), le théorème ci-dessus implique que g est une isométrie affine si et
seulement si f est une isométrie linéaire. Il suit maintenant de manière évidente que :

Théorème 3.1.10. Soit un espace euclidien V . L’ensemble E(V ) des isométries affines de V
est un sous-groupe de GA(V ), appelé le groupe euclidien de V . L’ensemble O(V ) des isométries
linéaires de V est un sous-groupe de GL(V ), appelé le groupe orthogonal de V . On a le diagramme
commutatif d’homomorphismes entre groupes

T (V ) E(V ) O(V )

T (V ) GA(V ) GL(V )

montrant que la première ligne est une sous-suite exacte scindée de la deuxième ligne. Cela
montre en particulier le produit semi-direct E(V ) = T (V ) ⋊O(V ).

Démonstration. Il est toujours vrai que la composée de deux applications isométriques est une
application isométrique, que l’application identité id : V → V est isométrique, et que l’inverse
(ensembliste) de toute application bijective isométrique est isométrique. Ainsi le résultat suit
du fait que les isométries (affines/linéaires) d’un espace euclidien V sont bijectives, donc des
automorphismes (affines/linéaires). □

3. Dans le cours de Géométrie en L2, une “isométrie de R2” était, par définition, une bijection préservant les
distances. Ici, par les résultats de l’Algèbre Linéaire, nous voyons que la bijectivité est en fait une conséquence de
la préservation des distances.

4. Plus généralement, le terme isométrie est aussi utilisé pour désigner un isomorphisme (affine/linéaire)
isométrique, c’est à dire, pour toute bijection (affine/linéaire) isométrique.
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3.2. Le groupe orthogonal

Les isométries affines d’un espace euclidien V ont bien évidemment toutes les propriétés
des automorphismes affines (voir les Propositions 2.2.4, 2.2.10 et 2.2.12), mais avec la qualité
supplémentaire qu’elles préservent les distances (et toutes les notions géométriques que l’on
peut exprimer à l’aide de la distance). La notation E(V ) pour le groupe euclidien n’est pas
la seule utilisée dans les références ; on y voit aussi Iso(V ) ou Eucl(V ). Par contre, la notation
O(V ) pour le groupe orthogonal d’un espace euclidien V est standard (et est utilisée également
dans le cadre plus général des espaces quadratiques). Dans certaines références, les éléments de
E(V ) sont appelés les transformations euclidiennes de V , et ceux de O(V ) les transformations
orthogonales.

3.2. Le groupe orthogonal

Vu son importance pour les isométries affines, on souhaite mieux comprendre le groupe orthogo-
nal O(V ) des isométries linéaires d’un espace euclidien V . Avec les lemmes démontrés auparavant
(et le Théorème du Rang) on vérifie facilement :

Proposition 3.2.1. Soit un espace euclidien V et une application linéaire f : V → V . Les
conditions suivantes sont équivalentes, et chacune d’entre elles exprime que f ∈ O(V ) 5 :

1. pour tout x, y ∈ V , ∥fx− fy∥ = ∥x− y∥,

2. pour tout x ∈ V , ∥fx∥ = ∥x∥,

3. pour tout x, y ∈ V , x · y = fx · fy.

Une isométrie linéaire préserve l’orthogonalité de vecteurs (si x · y = 0 alors fx · fy = 0) et
de sous-espaces vectoriels. (Mais attention, il ne suffit pas de préserver l’orthogonalité pour
être une isométrie : les homothéties – et plus généralement les similitudes – fournissent des
contre-exemples. Voir les exercices.)

On sait (cf. Proposition 2.1.3) que f ∈ GL(V ) exactement quand f : V → V est une ap-
plication linéaire envoyant une (et alors toute) base (quelconque) sur une base ; on peaufine ce
résultat pour les isométries linéaires :

Proposition 3.2.2. Soit un espace euclidien V . Une application linéaire f : V → V est une
isométrie si et seulement si f envoie une (et alors toute) base orthonormale 6 de V sur une base
orthonormale de V .

Démonstration. Si f : V → V est une isométrie linéaire, alors f préserve le produit scalaire, et
donc la norme et l’orthogonalité ; ainsi il suit que f envoie toute base orthonormale {e1, ..., en} sur
une base orthonormale {fe1, ..., fen}. Réciproquement, soit une base orthonormale {e1, ..., en}
telle qu’aussi {fe1, ..., fen} est une base orthonormale. Pour tout x ∈ V on a alors x =

∑
i αiei

et, par linéarité de f , aussi fx =
∑

i αifei. Mais alors ∥x∥2 =
∑

i α
2
i = ∥fx∥2, montrant que f

5. Souvent on prend la troisième condition pour définir les éléments de O(V ) ; pour insister sur l’importance
de la notion géométrique de distance, nous avons pris la première condition pour la définition.

6. Rappelons que, si {e1, ..., en} est une base orthonormale d’un espace euclidien V , alors – par bilinéarité du
produit scalaire – on a pour tout x =

∑
i
αiei et tout y =

∑
i
βiei que x · y =

∑
i
αiβi.
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3. Isométries

préserve la norme ; et il suit de manière évidente que ∥x− y∥ = ∥f(x− y)∥ = ∥fx− fy∥, donc
f est une isométrie. □

Faisons ensuite le lien avec les représentations matricielles des applications linéaires. Nous savons
déjà qu’en choisissant une base {e1, ..., en} (quelconque) d’un espace vectoriel V sur un corps K,
on établit un isomorphisme de groupes GL(V ) ∼= GL(n,K) envoyant un automorphisme linéaire
f : V → V sur sa matrice par rapport à la base chosie. Lorsque V est un espace euclidien, et on
choisit un base orthonormale, on peut faire mieux.

Lemme 3.2.3. Pour tout n ∈ N, l’ensemble

O(n) = {M ∈ GL(n,R) |M−1 = M t}

est un sous-groupe de GL(n,R) ; ses éléments s’appellent les matrices orthogonales 7.

Proposition 3.2.4. Soit un espace euclidien V . Tout choix de base orthonormale {e1, ..., en}
de V détermine un isomorphisme de groupes O(V ) ∼= O(n). On a un diagramme commutatif

O(V ) // //

��

GL(V )

��

O(n) // // GL(n,R)

d’homomorphismes de groupes, dont les flèches horizontales sont des inclusions de groupes, et
les flèches verticales sont des isomorphismes déterminés par le choix d’une base orthonormale.

Démonstration. Etant donné une base (quelconque) {e1, ..., en} de V , un automorphisme linéaire
f ∈ GL(V ) correspond avec une matrice inversible M = (mij)ij (par rapport à cette base) si et
seulement si fej =

∑
imijei. Supposons maintenant que {e1, ..., en} est une base orthonormale

de l’espace euclidien V ; on a alors que

fej · fek =
(
m1j · · · mnj

)
m1k

...
mnk

 .
Ainsi f est une isométrie si et seulement si {fe1, ..., fen} est une base orthonormale, si et
seulement si M tM = I, si et seulement si M est une matrice orthogonale. L’isomorphisme
GL(V ) ∼= G(n,R), déterminé par la base orthonormale {e1, ..., en} de V , se restreint donc aux
sous-groupes respectifs, viz. O(V ) ∼= O(n). □

Pour tout M ∈ O(n) on a M tM = I et donc det(M)2 = 1, d’où det(M) ∈ {−1,+1} ; ainsi pour
tout f ∈ O(V ) on a aussi que det(f) ∈ {−1,+1}. Notons que {−1,+1} ⊆ R× est un sous-groupe

7. Pour n = 0 il convient de dire que “la matrice vide” est une matrice orthogonale ; ainsi O(0) est le groupe
trivial, qui est bien isomorphe au groupe orthogonal O({0}) = {id}.
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3.2. Le groupe orthogonal

multiplicatif (et, à isomorphisme près, le seul groupe à deux éléments). Cela fait un diagramme
commutatif

O(V ) det //
��

��

{+1,−1}
��

��

GL(V )
det

//// R×

d’homomorphismes de groupes, dont les flèches verticales des injections ; et si dim(V ) ≥ 1, les
flèches horizontales sont des surjections 8. Tout comme le groupe linéaire spécial SL(V ) est, par
définition, le noyau de la deuxième ligne de ce diagramme, ici on a :

Théorème 3.2.5. Soit un espace euclidien V de dimension n ≥ 1. Le noyau de det : O(V ) →
{−1,+1} est noté SO(V ), et appellé le groupe orthogonal spécial de V . Ainsi on a un diagramme
commutatif

SO(V ) // //
��

��

O(V ) det // //
��

��

{+1,−1}
��

��

SL(V ) // // GL(V )
det

//// // R×

d’homomorphismes de groupes, dont la première ligne est une sous-suite exacte de la deuxième
ligne. On a en particulier que O(V )/SO(V ) ∼= {−1,+1}.

Pour la “version matricielle” de SO(V ), on définit bien évidemment

SO(n) = {M ∈ O(n) | det(M) = 1}

et il suit que, pour tout choix de base orthonormale de V (de dimension n ≥ 1) on a un
diagramme commutatif

SO(V ) O(V ) {−1,+1}

SO(n) O(n) {−1,+1}

det

det

d’homomorphismes de groupes, dont les lignes horizontales sont des suites exactes courtes, et les
flèches verticales sont des isomorphismes (déterminés par le choix de base de V ). Les éléments de
SO(V ) sont appelés les isométries linéaires directes : ils ne changent pas l’orientation de l’espace
(voir les exercices). Par ailleurs, ces suites exactes courtes sont scindées ; voir les exercices pour
une démonstration et des conséquences intéressantes.

Dans la suite, nous voulons étudier des générateurs pour les groupes O(V ) et SO(V ), ainsi
que leurs centres. Pour cela nous adapterons d’abord la notion de symétrie linéaire (cf. les
exercices du chapitre précédent) à la situation plus spécifique où l’espace V est euclidien :

8. Si {e1, ..., en} est une base orthonormale de V , alors aussi {−e1, e2, ..., en} est une base orthonormale ; et
l’unique application linéaire envoyant l’une sur l’autre, est un élément de O(V ) dont le déterminant vaut −1. Voir
aussi les symétries orthogonales, et en particulier les réflexions, plus loin.
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3. Isométries

Proposition 3.2.6. Soit E ⊆ V un sous-espace vectoriel d’un espace euclidien, et notons
E⊥ ⊆ V son (unique) orthocomplément : V = E ⊕ E⊥ ; ainsi tout x ∈ V admet une unique
décomposition x = xE + xE⊥. La symétrie linéaire

sE : V → V : xE + xE⊥ 7→ xE − xE⊥

est une isométrie (linéaire), appelée symétrie orthogonale (linéaire) d’axe E.

Démonstration. La linéarité de sE : V → V suit d’un exercice du chapitre précédent. Si on
choisit une base orthonormale de V qui est la concaténation de bases orthonormales de E et
E⊥, alors la matrice de sE est (

Ik

−Il

)

où k = dim(E), l = dim(E⊥) (et donc k + l = dim(V )), et Ir dénote la matrice unité r × r. Il
s’agit d’une matrice orthogonale, et donc sE est une isométrie linéaire. □

Pour E = V on a sE = id (identité) et pour E = {0} on a sE = −id (symétrie centrale).
Introduisons aussi la terminologie classique suivante :

Définition 3.2.7. Une réflexion linéaire d’un espace euclidien V de dimension n ≥ 1 est une
symétrie orthogonale linéaire sE : V → V telle que dim(E) = n − 1 (donc E est un hyperplan
vectoriel).

Clairement, si n = 1 alors l’unique réflexion est −id ; voici des illustrations de réflexions lorsque
n = 2 et n = 3 :

0

x
sE(x)

E
E⊥

0

x

sE(x)

E

E⊥

Lemme 3.2.8. Soit un espace euclidien V de dimension n ≥ 1, et x, y ∈ V . On a ∥x∥ = ∥y∥ si
et seulement s’il existe une réflexion linéaire s : V → V telle que sx = y.

Démonstration. S’il existe une réflexion envoyant x sur y, alors – puisque c’est une isométrie
linéaire – on a égalité des normes. Réciproquement, si x = y alors pour n’importe quel hyperplan
vectoriel H ⊆ V contenant x, la réflexion sH fixe x, et envoie donc x sur y. Si x ̸= y alors x−y ̸= 0
et D = R(x− y) est une droite vectorielle dans V ; son orthocomplément est un hyperplan, soit
H. Puisque

(x− y) · (x+ y) = ∥x∥2 − ∥y∥2 = 0
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3.2. Le groupe orthogonal

(on utilise que x et y sont de même norme), on voit que x + y ∈ H = D⊥, d’où l’unique
décomposition x = 1

2(x+ y) + 1
2(x− y)+ ∈ H ⊕D.

x

y
x+ y

0

x− y

D

H = D⊥

Il suit que sH(x) = 1
2(x+ y)− 1

2(x− y) = y, comme voulu. □

Théorème 3.2.9 (Cas particulier du Théorème de Cartan-Dieudonné). Soit un espace
euclidien V de dimension n ≥ 1. Toute isométrie linéaire f ∈ O(V ) est la composée de au plus
n réflexions linéaires 9 (lorsqu’on considère que la composée de zéro réflexions est l’identité).

Démonstration. On fait une preuve par induction sur n ≥ 1. Pour n = 1 on a O(V ) = {id,−id}
et tout est presque trivial : H = {0} est un hyperplan, et sH = −id.

Supposons maintenant que n ≥ 2. Si f ̸= id, alors il existe x0 ∈ V tel que fx0 ̸= x0.
Comme ∥fx0∥ = ∥x∥, le lemme précédent implique qu’il existe une réflexion s : V → V tel que
s(fx0) = x0. L’isométrie g := s ◦ f : V → V fixe alors le vecteur x0, et donc aussi tout élément
de la droite D = Rx0. Mais g préserve l’orthogonalité (comme toute isométrie linéaire), et donc
g(H) = H pour H = D⊥. Ainsi, l’isométrie g : V → V est la somme des deux isométries

gD : D → D : x 7→ x et gH : H → H : x 7→ gx.

Puisque dim(H) = n−1, l’hypothèse de l’induction s’applique : gH = sk ◦ ...◦s1 est la composée
de k ≤ n− 1 réflexions si : H → H. Mais chaque réflexion si détermine un hyperplan Hi ⊆ H ;
et l’hyperplan H ′

i := D ⊕ Hi ⊆ D ⊕ H = V détermine à son tour une réflexion s′
i : V → V .

Explicitement, pour x = xD + xH ∈ D ⊕H on a s′
i(x) = xD + si(xH) ∈ D ⊕H, ce qui permet

de déduire, pour tout x = xD + xH ∈ D ⊕H = V , que

(s′
k ◦ ... ◦ s′

1)(x) = xD + (sk ◦ ... ◦ s1)(xH) = gxD + gxH = g(xD + xH) = gx.

Il suit que f = sH ◦ g = s ◦ s′
k ◦ ... ◦ s′

1 est la composée de k + 1 ≤ n réflexions. □

Pour une réflexion s : V → V : xH + xD 7→ xH − xD (donc H est un hyperplan et D est son
orthocomplément), on peut toujours trouver une base orthonormale de V par rapport à laquelle
la matrice de s est 

1
. . .

1
−1

 .

9. Le nombre minimal de réflexions nécessaires est en fait n − dim(ker(f − id)) ; voir les références.
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Cela montre en particulier que det(s) = −1.

Corollaire 3.2.10. Soit un espace euclidien V . Alors f ∈ SO(V ) si et seulement si f est la
composée d’un nombre paire de réflexions.

Par ailleurs, les symétries orthogonales sont aussi utiles pour démontrer que :

Proposition 3.2.11. Le centre de O(V ) est Z(O(V )) = {id,−id}.

Démonstration. Une inclusion est triviale. Pour l’autre, soit f ∈ Z(O(V )), alors pour toute
symétrie orthogonale s : V → V on doit avoir fs = sf . En particulier, pour tout 0 ̸= x ∈ V on
peut considérer E = Rx ; alors la symétrie sE : V → V fixe exactement les éléments de la droite
E (et envoie les éléments de l’orthocomplément E⊥ sur leurs opposés). En copiant l’argument
donné pour le calcul du centre de GL(V ), on trouve que f = λid pour un λ ∈ R. Mais la
contrainte supplémentaire que det(f) = ±1 implique que λ = ±1 (dans K = R) ; et on trouve
que f ∈ {id,−id}. □

Lorsque dim(V ) ∈ {0, 1}, le groupe orthogonal spécial SO(V ) est trivial ; il est donc égal à son
centre. Pour dim(V ) = 2 on voit sans grande difficulté que SO(V ) est commutatif ; il est donc
aussi égal à son centre. Par contre, pour dim(V ) ≥ 3 la situation est plus intéressante, et pour
calculer le centre de SO(V ) il est utile d’introduire :

Définition 3.2.12. Un retournement (aussi appelé renversement ou demi-tour) d’un espace
euclidien V de dimension n ≥ 2 est une symétrie orthogonale sE : V → V telle que dim(E) =
n− 2.

Autrement dit, les points fixes d’un retournement forment un sous-espace de dimension n − 2
de V . Bien évidemment, cette définition n’a pas de sens pour n ∈ {0, 1}, et pour n = 2 l’unique
retournement est −id. Ainsi, c’est pour n ≥ 3 que cette notion s’avère utile. Voici une illustration
pour n = 3, où un retournement est donc exactement une rotation d’angle π, ce qui explique la
terminologie :

0

x

sE(x)

E⊥

E

Par ailleurs, on peut toujours trouver une base de V par rapport à laquelle la matrice d’un
retournement est 

1
. . .

1
−1

−1


77



3.2. Le groupe orthogonal

ce qui montre en particulier que tout retournement est un élément de SO(V ).

Proposition 3.2.13. Soit un espace euclidien V de dimension n ≥ 3, alors

Z(SO(V )) =
{
{id,−id} si n est pair
{id} si n est impair

Démonstration. Les inclusions {id,−id} ⊆ Z(SO(V )) (pour n pair) et {id} ⊆ Z(SO(V )) (pour
n impair) sont évidentes. Réciproquement, tout f ∈ Z(SO(V )) doit commuter avec tous les
retournements. Notamment, pour tout plan P ⊆ V , si on note son orthocomplément E = P⊥,
on doit avoir fsE = sEf , et donc pour tout x ∈ P on a sE(fx) = fsE(x) = f(−x) = −fx ;
mais donc fx ∈ P . Ainsi on voit que f(P ) = P pour tout plan P ⊆ V ; et toute droite étant
l’intersection de deux plans, et f préservant toutes les intersections, il suit que f(D) = D pour
toute droite D ⊆ V . Comme dans le calcul du centre de GL(V ) et de O(V ), on trouve déjà
que f = ±id. Mais ici on doit avoir 1 = det(f) = (±1)n, donc selon la parité de n on trouve
l’inclusion annoncée. □

Incidemment, les retournements engendrent tout SO(V ) :

Proposition 3.2.14. Soit un espace euclidien V de dimension n ≥ 3. Toute composée de
deux réflexions est la composée de deux retournements. Par conséquent, tout f ∈ SO(V ) est la
composée de au plus n retournements.

Démonstration. Si on compose une réflexion s : V → V avec elle-même, alors s ◦ s = id est
évidemment la composée d’un retournement (au choix) avec lui-même ; le résultat est donc
trivial. Prenons donc deux réflexions distinctes, déterminées par deux décompositions distinctes
H ⊕D = V = H ′ ⊕D′ (en “hyperplan plus droite”), soient

s : V → V : xH + xD 7→ xH − xD et s′ : V → V : xH′ + xD′ 7→ xH′ − xD′ .

Puisque dim(V ) = n ≥ 3, l’intersection H ∩ H ′ (de dimension n − 2) contient une droite,
disons D′′, dont l’orthocomplément est un hyperplan H ′′ = (D′′)⊥, qui détermine à son tour une
réflexion s′′ : V → V . On a trivialement

s′ ◦ s = s′ ◦ (s′′ ◦ s′′) ◦ s = (s′ ◦ s′′) ◦ (s′′ ◦ s),

et on va montrer que r := s′′ ◦ s et r′ := s′ ◦ s′′ sont des retournements. En effet, puisque
D′′ ⊆ H ∩ H ′ ⊆ H, on peut considérer l’orthocomplément de D′′ dans H, soit H1, puis en
déduire la décomposition orthogonale V = H ⊕ D = H1 ⊕ D′′ ⊕ D. Ecrivant maintenant x =
xH1 + xD′′ + xD ∈ H1 ⊕D′′ ⊕D on peut calculer que

rx = (s′′(s(xH1 + xD′′ + xD)) = s′′(xH1 + xD′′ − xD) = xH1 − xD′′ − xD

ce qui montre que r laisse fixe l’espace H1 de dimension n − 2 et envoie tout élément du plan
D ⊕D′′ sur son opposé : c’est donc un retournement. Même type de calcul pour r′ = s′ ◦ s′′. □

On termine cette section avec une expression explicite pour tous les éléments de O(V ).
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Théorème 3.2.15. Soit un espace euclidien V . Pour tout f ∈ O(V ) il existe une base ortho-
normale de V telle que la matrice de f est l’assemblage diagonale de matrices carrées

Ik

−Il

Rθ1
. . .

Rθt


où Ik et Il sont des matrices unités (de genre k × k et l× l), et chaque Rθi

est la matrice 2× 2
d’une rotation plane d’angle θi, soit 10

Rθi
=
(

cos θi − sin θi

sin θi cos θi

)
.

(On a k, l, t ≥ 0 et k + l + 2t = dim(V ).)

On ne fera pas la démonstration de ce théorème en dimension quelconque, mais seulement en
dimension 3 (où la démonstration est plus simple, mais présente tout de même l’essentiel du cas
général). Les dimensions n ∈ {0, 1, 2} sont laissées en exercice.

Théorème 3.2.16. Soit un espace euclidien V de dimension 3. Pour tout f ∈ O(V ) il existe
une base orthonormale de V telle que la matrice de f est

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ou


−1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
Dans le premier cas on dit que f est une rotation, et dans le deuxième cas f est une rotaflexion,
c’est à dire, la composée (dans n’importe quel ordre) d’une rotation et d’une réflexion, l’axe de
la rotation étant orthogonal à l’axe de la réflexion :

0

x

f(x)θ

0

x

f(x)

θ

θ

Démonstration. S’il existe 0 ̸= x ∈ V et λ ∈ R tels que fx = λx, alors on voit facilement que
∥x∥ = ∥fx∥ = ∥λx∥ = |λ|∥x∥, et donc λ = ±1 ; autrement dit, les seuls valeurs propres réelles

10. Ce sont exactement les éléments de SO(2) ; voir les exercices.
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possibles pour f ∈ O(V ) sont ±1. En géneral il est possible que f n’ait aucune valeur propre
réelle, mais pour dim(V ) = 3 le polynôme caractéristique de f est de degré 3 et à coefficients réels,
donc admet au moins une racine réelle 11. Ainsi il y a toujours une droite D ⊆ V engendré par
un vecteur propre – que ce soit pour la valeur propre λ = 1 ou λ = −1 – telle que f(D) = D ;
et puisque f préserve l’orthogonalité, on a aussi f(H) = H pour H = D⊥. Ainsi l’isométrie
f : V → V est la somme des deux isométries

fD : D → D : x 7→ λx et fH : H → H : x 7→ fx,

où dim(D) = 1 et dim(H) = 2. Pour toute base orthonormale de la droite D, la matrice de fD

est (λ) ∈ R1×1. Puisque H est un plan, fH est soit une réflexion, soit une rotation (= composée
de deux réflexions), et on peut donc trouver une base orthonormale de H pour laquelle la matrice
de fH est

soit
(

1 0
0 −1

)
, soit

(
cos θ − sin θ
sin θ cos θ

)
.

Par concaténation de ces bases orthonormales de D et de H, on obtient une base orthonormale
de V = D ⊕H ; et la matrice de f = fD ⊕ fH par rapport à cette base est

±1 0 0
0 1 0
0 0 −1

 ou


±1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
Mais la première matrice est en fait un cas particulier de la deuxième (à permutation des vecteurs
de base près) pour θ = 0 et θ = π ; donc le résultat suit. □

Ce théorème permet de classifier les éléments de O(3) (et donc les isométries linéaires en dimen-
sion 3) à l’aide du déterminant, la trace et les espaces propres.

3.3. Classification des isométries affines

Pour un espace euclidien V donné, le groupe euclidien E(V ) contient exactement les automor-
phismes affines g = t ◦ f avec f ∈ O(V ). Le groupe O(V ) étant engendré par les réflexions
linéaires, il est naturel de voir comment on peut engendrer le groupe E(V ). D’abord on définit
“par conjugaison” la notion naturelle de réflexion affine (voir aussi les exercices du chapitre
précédent) :

Définition 3.3.1. Soit V un espace euclidien de dimension n ≥ 1. Une réflexion affine de V
est une isométrie affine g = ta ◦ f ◦ t−a où f est une réflexion linéaire et a ∈ V .

Ainsi, si H0 est l’axe de la réflexion linéaire f , alors l’hyperplan affine H = H0 + a est l’axe de
g = ta ◦ f ◦ t−a. Réciproquement, tout hyperplan affine H ⊆ V est l’axe d’une unique réflexion

11. Le graphe d’une fonction polynomiale de degré 3 à toujours pour limites (lorsque x → ±∞) les valeurs +∞
et −∞, et “coupe” donc l’axe X à au moins un endroit : c’est une racine réelle du polynôme en question.
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affine g = ta◦f ◦t−a où f est la réflexion linéaire d’axe H0 = H−a et a est un point (quelconque)
de H. Voici une illustration pour n = 3 :

a

x

g(x)

H = H0 + a 0

H⊥
0

H0

Géométriquement parlant, la réflexion affine d’axe H envoie tout point x sur un point x′ de telle
manière que la droite xx′ soit orthogonale à H et que H contienne le milieu de x et x′ (voir
aussi les exercices du chapitre précédent) :

x

x′

y

y′

H

(Par ce même procédé de conjugaison, on peut donner une définition naturelle de “symétrie
orthogonale affine”, dont la réflexion affine est alors un cas particulier.)

Voici maintenant l’analogue “affine” du Théorème de Cartan-Dieudonné (Théorème 3.2.9) :

Théorème 3.3.2 (Décomposition d’une isométrie en réflexions affines). Soit V un
espace euclidien de dimension n ≥ 1. Tout isométrie affine g ∈ E(V ) est la composée de au plus
n+ 2 réflexions affines 12.

Il est utile de montrer d’abord un lemme.

Lemme 3.3.3. Soit V un espace euclidien de dimension n ≥ 1. Toute translation t ∈ T (V ) est
la composée de deux réflexions affines.

Démonstration. Si t = id alors t = s ◦ s pour n’importe quelle réflexion s. Si t = ta avec a ̸= 0,
alors l’hyperplan (vectoriel 13) H = (Ra)⊥ détermine la réflexion (linéaire) sH avec laquelle on
peut maintant calculer que

ta = ta
2 + a

2
◦ id = ta

2
◦ ta

2
◦ sH ◦ sH = ta

2
◦ sH ◦ t− a

2
◦ sH ,

ce qui montre que ta est la composée des réflexions sH (linéaire) et (ta
2
◦ sH ◦ t− a

2
) (affine). □

12. On peut préciser le nombre de réflexions affines nécessaires ; voir les références.
13. On peut en fait prendre n’importe quel hyperplan affine orthogonal à la droite vectorielle Ra.
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Démonstration du Théorème. Supposons d’abord que g ∈ E(V ) a un point fixe, soit ga = a.
Alors f = t−a ◦ g ◦ ta est une isométrie fixant 0, c’est à dire f ∈ O(V ). Il suit par le Théorème
3.2.9 que f = sk ◦ ... ◦ s1 pour k ≤ n réflexions linéaires, et donc

g = ta ◦ f ◦ t−a = ta ◦ (sk ◦ ... ◦ s1) ◦ t−a = (ta ◦ sk ◦ t−a) ◦ ... ◦ (ta ◦ s1 ◦ t−a).

Chacun des (ta ◦ si ◦ t−a) est (par définition) une réflexion affine.
Supposons maintenant que g ∈ E(V ) est sans points fixes. Pour un point a ∈ V au choix,

g′ = ta−ga◦g ∈ E(V ) fixe a, et s’écrit (par l’argument précédent) comme une composée de k ≤ n
réflexions affines. Par le lemme, toute translation s’écrit comme une composée de deux réflexions
affines. Ainsi g = tga−a ◦ g′ s’écrit comme la composée de k + 2 ≤ n+ 2 réflexions affines. □

Les résultats ci-dessus s’appliquent aux espaces euclidiens de dimension quelconque ; mais
pour la suite de cette section, on se limitera 14 aux espaces euclidiens de dimension 3. Par le
Théorème 3.2.16, les éléments de O(V ) sont alors exactement les rotations et les rotaflexions
(linéaires) ; et une rotaflexion est exactement la composée (dans n’importe quel ordre) d’une
rotation avec une réflexion d’axes perpendiculaires. Pour décrire les éléments de E(V ), on définit
d’abord “par conjugaison” les rotations affines :

Définition 3.3.4. Soit V un espace euclidien de dimension 3. Une rotation affine est une
isométrie de la forme g = ta ◦ f ◦ t−a où f est une rotation linéaire.

Si f : V → V est la rotation linéaire d’axe D0 et d’angle θ, alors la rotation affine g = ta ◦f ◦ t−a

est d’axe D = D0 +a et d’angle θ. Réciproquement, toute droite affine D et angle θ déterminent
une (unique 15) rotation affine g = ta ◦ f ◦ t−a où f est la rotation linéaire d’axe D0 = D − a et
a est un point (quelconque) de D. Voici une illustration :

D0

0

θ

D

a

g(x)
x

θ

Ainsi, parmi les éléments de E(V ) il y a les translations, les réflexions affines et les rotations
affines. Le résultat suivant dit que toute isométrie affine g ∈ E(V ) peut être décrite en termes
de composées “bien choisies” de translations, réflexions et rotations, et donne alors une inter-
prétation géométrique des éléments de E(V ).

14. Pour dim(V ) ∈ {0, 1} tout est trivial, et pour dim(V ) = 2 on peut consulter le cours de Géométrie de L2.
Voir aussi les exercices.

15. Si on travaille dans un espace orienté, voir les exercices.
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Théorème 3.3.5 (Classification des isométries en dimension 3). Toute isométrie affine
g = t ◦ f ∈ E(V ) d’un espace euclidien V de dimension 3 est l’un des quatre cas suivants :

1. Si f est l’identité, alors g est une translation.

2. Si f est une réflexion, alors g est une réflexion glisée : une composée (dans n’importe quel
ordre) d’une réflexion affine avec une translation par un vecteur dans la direction de l’axe
de la réflexion.

x

g(x)

3. Si f est une rotation d’angle θ ̸= 0, alors g est un vissage : la composée (dans n’importe
quel ordre) d’une rotation affine avec une translation par un vecteur dans la direction de
l’axe de la rotation.

x

g(x)

=
x

g(x)

4. Si f est une rotaflexion d’angle θ ̸= 0, alors g est une rotaflexion affine : la composée (dans
n’importe quel ordre) d’une rotation affine avec une refléxion affine par un plan orthogonal
à l’axe de la rotation.

g(x)

x

Démonstration. Pour fixer les notations, posons g = ta ◦ f avec a ∈ V et f ∈ O(V ). Ainsi f est
soit l’identité (rotation d’angle θ = 0), soit une réflexion (rotaflexion d’angle θ = 0), soit une
rotation d’angle θ ̸= 0, soit une rotaflexion d’angle θ ̸= 0.

(1) Si f est l’identité, alors tout est trivial.
(2) Si f est une réflexion d’axe H0, alors la restriction de f à H0 est idH0 et sa restriction à

D0 = H⊥
0 est −idD0 . Notons a = aD0 + aH0 pour l’unique décomposition de a ∈ V = D0 ⊕H0.
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On peut alors calculer que

g = ta ◦ f = taH0
◦ taD0

◦ f = taH0
◦ (taD0

2
◦ f ◦ t− aD0

2
)

mais aussi (puisque f fixe les éléments de H0)

g = ta ◦ f = taD0
◦ taH0

◦ f = taD0
◦ f ◦ taH0

= (taD0
2
◦ f ◦ t− aD0

2
) ◦ taH0

.

Ainsi g est la composée, dans n’importe quel ordre, de la réflexion affine d’axe H = H0 + aD0
2

avec la translation par aH0 , un vecteur de la direction de l’axe de la réflexion.
(3 et 4) Si f est soit une rotation, soit une rotaflexion (composée de rotation et réflexion),

notons D0 l’axe et θ ̸= 0 l’angle de la rotation (et donc H0 = D⊥
0 est l’axe de la réflexion, le

cas échéant). Notons toujours a = aD0 + aH0 pour l’unique décomposition de a ∈ V = D0⊕H0.
Que f soit une rotation ou une rotaflexion, sa restriction à H0 est une rotation d’angle θ (en
dimension 2). Pour a = aD0 + aH0 il est alors toujours possible de trouver 16 un (unique) b ∈ H0

tel que aH0 = b− f(b), comme indiqué dans ce dessin dans le plan H0 :

0

aH0

b

f(b)

−f(b)

θ
θ

2

π − θ
2

Il suit que
g = ta ◦ f = taD0

◦ taH0
◦ f = taD0

◦ (tb ◦ f ◦ t−b).

On considère maintenant deux cas :
(3) Si f est une rotation, alors tb ◦ f ◦ t−b est la rotation affine d’axe D = D0 + b et d’angle

θ. Par ailleurs, puisque la restriction de f à D0 est idD0 (f fixe les éléments de D0), et puisque
aD0 ∈ D0 on peut calculer (par commutativité des translations) que

g = taD0
◦ (tb ◦ f ◦ t−b) = tb ◦ (taD0

◦ f) ◦ t−b = tb ◦ (f ◦ taD0
) ◦ t−b = (tb ◦ f ◦ t−b) ◦ taD0

.

Ainsi g est la composée, dans n’importe quel ordre, de la rotation affine d’axe D = D0 + b

et d’angle θ, avec la translation par le vecteur aD0 (un élément de la direction de l’axe de la
rotation).

(4) Si f est une rotaflexion, alors la restriction de f à D0 est −idD0 (f envoie les éléments de
D0 à leurs opposés), et puisque aD0 ∈ D0 on peut calculer (par commutativité des translations)
que

g = taD0
◦ (tb ◦ f ◦ t−b) = tb ◦ taD0

◦ f ◦ t−b = tb ◦ (taD0
2
◦ f ◦ t− aD0

2
) ◦ t−b = tc ◦ f ◦ t−c

16. Plus algébriquement : ker(idH0 − fH0 ) = {0} car fH0 n’a pas de points fixes, donc im(idH0 − fH0 ) = H0 ;
c’est à dire, tout élément de H0 est dans l’image de idH0 − fH0 .
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pour c = b + aD0
2 . De plus, lorsqu’on écrit f = f2 ◦ f1 = f1 ◦ f2 pour la décomposition de la

rotaflexion f en réflexion f1 (d’axe H0) et rotation f2 (d’axe D0 = H⊥
0 et angle θ), il suit aussi

que
g = tc ◦ f ◦ t−c = (tc ◦ f2 ◦ t−c) ◦ (tc ◦ f1 ◦ t−c) = (tc ◦ f1 ◦ t−c) ◦ (tc ◦ f2 ◦ t−c).

Ainsi g est la composée, dans n’importe quel ordre, d’une rotation affine d’axe D = D0 + c et
d’angle θ, et d’une réflexion affine d’axe H = H0 + c. □

Remarquons que, dans cette démonstration, les “éléments géométriques” (vecteur de translation,
plan de réflexion, axe et angle de rotation) d’une isométrie affine quelconque g ∈ E(V ) sont
explicitement calculés. Par ailleurs, on peut (presque) reconnaitre une isométrie affine par ses
points fixes :

Corollaire 3.3.6 (Points fixes des isométries affines). Soit une isométrie affine g = t ◦ f
d’un espace euclidien V de dimension 3. Selon les points fixes de g et le détermininant de f , on
a la classification suivante :

points fixes det(f) = 1 det(f) = −1

aucun translation, vissage reflexion glissée

singleton n’existe pas rotaflexion

droite rotation n’existe pas

plan n’existe pas réflexion

espace identité n’existe pas

(Dans ce tableau, par “vissage” on entend un vissage qui n’est ni une translation ni une rotation,
par “translation” on entend une translation qui n’est pas l’identité, etc.)

Notons qu’une translation peut être considérée comme un vissage d’angle θ = 0, et qu’une
rotaflexion d’angle θ = 0 est tout simplement une réflexion. Une rotation d’angle θ = π est
exactement un retournement, alors qu’une rotaflexion d’angle θ = π est une symétrie centrale.

Sans surprise, pour un espace euclidien V , on définit le groupe euclidien spécial SE(V )
comme le produit semidirect SE(V ) = T (V ) ⋊ SO(V ). De manière équivalente, SE(V ) est le
sous-groupe de E(V ) des isométries (affines) dont la partie linéaire est dans SO(V ) (c’est à dire,
de déterminant 1). Ou encore, SE(V ) est le sous-groupe des isométries dans SA(V ). Les éléments
de SE(V ) ne changent pas l’orientation de l’espace (voir les exercices pour plus de détails), et
sont appelés les mouvements rigides 17. En effet, en mécanique classique, ces mouvements rigides
sont considérés comme les seuls déplacements possibles d’un solide dans l’espace, sans déformer
ce solide. Nous pouvons situer ce groupe parmis tous les autres groupes rencontrés dans ce cours

17. Aussi utilisé : déplacement, mouvement euclidien, isométrie positive (ou directe), etc. Attention : la termino-
logie peut être différente dans certaines références.
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à l’aide du diagramme

T (V ) // // SE(V ) // //
��

��

%%

%%

SO(V )
��

��

%%

%%

T (V ) // // E(V ) // //
��

��

O(V )
��

��

T (V ) // // SA(V ) // //
%%

%%

SL(V )
%%

%%

T (V ) // // GA(V ) // // GL(V )

dans lequel les lignes horizontales sont des suites exactes courtes scindées (et donc le groupe “au
milieu” est le produit semi-direct du groupe “à sa gauche” avec le groupe “à sa droite”), et les
homomorphismes non-horizontales sont des inclusions. Voici un résultat qui suit directement du
Théorème 3.3.2 et le Corollaire 3.2.10 :

Corollaire 3.3.7 (Décomposition d’un mouvement rigide en réflexions affines). Tout
mouvement rigide d’un espace euclidien de dimension n ≥ 1 est la composée d’un nombre paire
de réflexions orthogonales affines.

Ensuite, la classification des isométries affines du Théorème 3.3.5 implique ce résultat – dû à
l’astronome et mathématicien italien Giulio Mozzi (1730–1813) et redémontré par le géomètre
français Michel Chasles (1793–1880) – de très grande importance en mécanique et cinématique :

Corollaire 3.3.8 (Théorème de Mozzi-Chasles). Tout mouvement rigide d’un espace eu-
clidien de dimension 3 est un vissage (éventuellement d’angle 0, c’est à dire, une translation).

Et voici, pour terminer en beauté cette section, une conséquence simple mais surprenante, dé-
montrée par le swiss Leonhard Euler (1707–1783), de la classification des isométries par leurs
points fixes :

Corollaire 3.3.9 (Théorème de la Rotation d’Euler). Lorsqu’on tourne une sphère (dans
un espace euclidien de dimension 3) autour de son centre 18, il y a toujours un diamètre qui est
fixé (et, dans les faits, on a effectué une rotation autour de ce diamètre).

Démonstration. En “tournant la sphère autour de son centre”, on effectue un mouvement rigide
ayant (au moins) un point fixe (à savoir le centre de la sphère). Selon le Corollaire 3.3.6 cela ne
peut être qu’une rotation affine. L’axe de cette rotation est la droite affine des points fixes, et
passe donc par le centre : ainsi il y a un diamètre de la sphère qui est fixé. □

3.4. De nouveau quelques résultats géométriques

Le produit scalaire d’un espace euclidien V permet d’y mesurer la distance entre toute paire de
points. Par contre, la notion d’angle ne s’applique a priori qu’aux vecteurs. Remédions à cela :

18. Dans la pratique : prenez un ballon de foot entre les mains, et tournez-le comme bon vous semble !
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Définition 3.4.1. Soient trois points a, b et c. L’angle ∡abc est l’angle entre les vecteurs a− b
et c− b.

a− b
0

c− b

a
b

c

Soulignons qu’il s’agit ici de l’angle non-orienté, qui est un nombre θ ∈ [0, π] ; cela implique que
l’unique angle droit est π

2 . Le résultat le plus emblématique de la géométrie euclidienne est sans
doute :

Proposition 3.4.2 (Théorème de Pythagoras 19). Un (vrai) triangle abc est rectangle en b

si et seulement si dist(a, b)2 + dist(b, c)2 = dist(a, c)2.

a

b

c

Démonstration. Le résultat suit de

∥c− a∥2 = (c− a) · (c− a)

= ((c− b) + (b− a)) · ((c− b) + (b− a))

= ∥c− b∥2 + 2(c− b) · (b− a) + ∥b− a∥2

et du fait que (c− b) · (b− a) = 0 si et seulement si (c− b) · (a− b) = 0. □

Par ailleurs, on retrouve la “définition géométrique” du cosinus d’un angle (voir le cours de
Géométrie en L2) comme suit :

Proposition 3.4.3. Dans un triangle abc, rectangle en b, on a cos∡cab = dist(a, b)
dist(a, c) .

a b

c

Démonstration. On utilise (c− b) · (a− b) = 0 pour vérifier que

cos∡cab = (c− a) · (b− a)
∥c− a∥∥b− a∥

= ((c− b) + (b− a)) · (b− a)
∥c− a∥∥b− a∥

= (b− a) · (b− a)
∥c− a∥∥b− a∥

= ∥b− a∥
∥c− a∥

.

□

19. Πυθαγόρας (en grec) vivait de −570 à −495 et a fait ses travaux principalement à Crotone, aujourd’hui
dans la région de Calabre, en Italie.
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Quant à la “compatibilité” de ces notions géométriques (incidence, parallélisme, distance,
angle) avec les isométries affines, nous savons déjà que tout g ∈ E(V ) préserve (et reflète)
l’incidence et le parallélisme entre sous-espaces affines (comme tout automorphisme affine), et
les distances entre les points (par définition même d’isométrie). Concernant les angles (et donc
l’orthogonalité), on peut ajouter que :

Proposition 3.4.4. Toute isométrie affine g ∈ E(V ) préserve (et reflète) les angles : si a′ = ga,
b′ = gb et c′ = gc alors ∡abc = ∡a′b′c′.

Démonstration. Toute isométrie linéaire f : V → V préserve le produit scalaire ; si on note
a′ = fa, b′ = fb et c′ = fc, alors

(a− b) · (c− b) = f(a− b) · f(c− b) = (fa− fb) · (fc− fb) = (c′ − b′) · (a′ − b′)

implique que ∡abc = ∡a′b′c′. Toute translation t : V → V : x 7→ x + v est une isométrie affine ;
si on note a′ = ta, b′ = tb et c′ = tc, alors

(a− b) · (c− b) = (a+ v − v − b) · (c+ v − v − b) = (ta− tb) · (tc− tb) = (a′ − b′) · (c′ − b′)

implique que ∡abc = ∡a′b′c′. Puisque g ∈ E(V ) s’écrit comme g = tf avec t ∈ T (V ) et f ∈ O(V ),
le résultat suit par composition. □

On peut maintenant élégamment exprimer qu’une isométrie affine est un “changement de repère
affine orthonormal” :

Définition 3.4.5. Dans un espace euclidien V , un repère affine {a0, a1, ..., ak} est appelé or-
thonormal si dist(a0, ai) = 1 (pour tout i ̸= 0) et ∡aia0aj = π

2 (pour tout 0 ̸= i ̸= j ̸= 0).

a0 ai

aj

Avec le produit scalaire sur V , cela s’écrit comme

(ai − a0) · (aj − a0) =
{

1 si 0 ̸= i = j

0 si 0 ̸= i ̸= j ̸= 0

c’est à dire, {a1 − a0, ..., ak − a0} est une suite orthonormale dans V .

Proposition 3.4.6. Une application affine g : V → V est une isométrie affine si et seulement
si g envoie un (et alors tout) repère affine orthonormal de V sur un repère affine orthonormal
de V .

Démonstration. Si g est une isométrie affine et {a0, a1, ..., an} est un repère affine orthonormal
de V , alors {ga0, ga1, ..., gan} est un repère affine orthonormal de V , par les Propositions 2.2.10
et 3.4.4. Réciproquement, si g est une application affine envoyant un repère affine orthonormal
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{a0, a1, ..., an} sur un repère affine orthonormale {ga0, ga1, ..., gan}, alors en écrivant g = tf avec
translation t : V → V et application linéaire f : V → V , le calcul

gai − ga0 = tfai − tfa0 = fai − fa0 = f(ai − a0),

montre que f envoie la base orthonormale {a1 − a0, ..., an − a0} de V sur la base orthonormale
{ga1−ga0, ..., gan−ga0} = {f(a1−a0), ..., f(an−a0)} de V : par la Proposition 3.2.2 on obtient
f ∈ O(V ), comme voulu. □

Les quelques résultats ci-dessus indiquent bien comment tous les résultats que nous avons dé-
montrés dans le cours de Géométrie en L2, pour le plan cartésien R2, sont en fait des résultats
de la géométrie affine euclidienne. Notamment, la notion de “changement de repère cartésien”,
utilisée maintes fois dans le cours de L2, est identique à la notion d’“isométrie affine” develop-
pée ici. Ainsi on peut parfaitement importer les résultats concernant les triangles congruents,
les cercles circonscrits et inscrits, etc. aux espaces euclidiens. Cependant, le cadre ici est tout
de même plus général, ne fut-ce que par l’admission de dimension quelconque pour l’espace
euclidien considéré—et dans la suite cela a des jolies conséquences.

Dans le cours de Géométrie en L2, nous avons montré en détail que toute équation polyno-
miale

ax2 + bxy + cy2 + dx+ ey + f = 0

(en deux variables, à coefficients réels, de degré 2) se réduit “par changement de repère (affine
orthonormal)”, à une des équations réduites suivantes :

– ax2 + by2 = 1,

– ax2 + by2 = 0,

– y = ax2,

où a, b ∈ R et a ̸= 0. Ecrivant ci-dessous a, b ∈ R+
0 , alors selon les valeurs de ces paramètres, le

locus d’une telle équation est l’une des figures suivantes dans le plan euclidien R2 :

– ellipse : ax2 + by2 = 1,

X

Y

rf

1
r2x

2 + 1
r2 − f2 y

2 = 1

89



3.4. De nouveau quelques résultats géométriques

– hyperbole : ax2 − by2 = 1,

X

Y

rf

1
r2x

2 − 1
f2 − r2 y

2 = 1

– parabole : y = ax2,

X

Y

f

f

y = 1
4f x

2

– cas dégénérés : le vide, un point, une droite, deux droites sécantes, deux droites parallèles.

Et bien sûr nous avons découvert certaines propriétés “géométriques” de ces figures—notamment
le fait qu’il s’agit de sections de coniques.

Plus généralement, on peut considérer une équation polynomiale, toujours à coefficients réels
et de degré 2, mais maintenant en n variables x1, ..., xn :

n∑
i,j=1

aijxixj +
n∑

i=1
bixi + c = 0, (3.1)

avec au moins un aij ̸= 0. On peut écrire cette équation sous forme matricielle comme

(
x1 · · · xn

)
a11 · · · a1n

...
...

an1 · · · ann



x1
...
xn

+
(
b1 · · · bn

)
x1
...
xn

+ c = 0,

c’est à dire,
XtAX +BtX + C = 0

où X est la matrice colonne contenant les variables, et A ̸= O. Quitte à remplacer la matrice
A par 1

2(A + At), on peut supposer que A est symétrique (A = At). Ainsi, par le Théorème
Spectral, il existe une matrice orthogonale M ∈ O(n) et une matrice diagonale non-nulle D
(unique à permutation de ses éléments près) telle que A = M tDM . On a alors

XtAX +BX + C = 0 ⇐⇒ Xt(M tDM)X +Bt(M tM)X + C = 0
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⇐⇒ (MX)tD(MX) + (MB)t(MX) + C = 0.

Autrement dit, par l’isométrie linéaire X 7→MX, l’équation donnée s’écrit (lorsqu’on renomme
adéquatement les variables et les coefficients) comme

n∑
i=1

(aix
2
i + bixi) + c = 0

avec (a1, ..., an) ̸= (0, ..., 0). Maintenant, pour chaque ai ̸= 0 on peut réécrire

aix
2
i + bixi = ai(xi + bi

2ai
)2 − ai(

bi

2ai
)2,

c’est à dire, par la translation

xi 7→
{
xi + bi

2ai
si ai ̸= 0

xi sinon
on peut simplifier l’équation pour que chaque variable n’apparaisse qu’une seule fois : soit dans
un terme de degré 2, soit dans un terme de degré 1. Puis, par une permutation des variables
s’il le faut, et en renommant adéquatement les coefficients, on peut réécrire l’équation donnée
comme

k∑
i=1

aix
2
i +

n∑
i=k+1

bixi + c = 0, (3.2)

avec 1 ≤ k ≤ n et a1 ̸= 0.
Si tous les bi’s sont nuls, alors – selon le cas où c = 0 ou c ̸= 0 – cette équation se décline en

deux formes :
“quadrique de type 1” :

n∑
i=1

aix
2
i = 1, (3.3)

“quadrique de type 2” :
n∑

i=1
aix

2
i = 0. (3.4)

S’il existe un bi ̸= 0, alors l’équation (3.2) contient le terme linéaire bixi+c = bi(xi+ c
bi

), donc
par la translation xi 7→ xi + c

bi
(et xj 7→ xj pour j ̸= i) on peut faire disparaître le coefficient

constant c. L’équation prend alors la forme
k∑

i=1
aix

2
i +

n∑
i=k+1

bixi = 0 (3.5)

(en ayant renommé adéquatement les coefficients, comme d’habitute), toujours avec bi ̸= 0. Mais
puisque κ := ∥(0, ..., 0,−bk+1, ...,−bn)∥ ̸= 0, le vecteur (0, ..., 0, bk+1

κ , ..., bn
κ ) est de norme 1. On

peut donc trouver des vecteurs ek+1, ..., en−1 pour faire une base orthonormale

e1 = (1, 0, 0, ..., 0),
e2 = (0, 1, 0, ..., 0),
...
ek = (0, ..., 0, 1, 0, ..., 0),
ek+1,
...
en−1,

en = (0, ..., 0, bk+1
κ , ..., bn

κ ).
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Par l’isométrie linéaire X 7→MX, où M est la matrice contenant les coordonnées des vecteurs
(ei)i comme colonnes, on transforme l’équation (3.5) ayant n−k termes linéaires en une équation
n’ayant qu’un seul terme linéaire, que l’on peut alors réécrire (en reparamétrant, une fois de plus,
les coefficients) comme :

“quadrique de type 3” :
n−1∑
i=1

aix
2
i = xn. (3.6)

Bref, nous avons montré :

Théorème 3.4.7. A isométrie affine près, toute équation quadratique (à coefficients réels) s’écrit
comme une des trois formes réduites suivantes :

– type 1 : a1x
2
1 + ...+ anx

2
n = 1,

– type 2 : a1x
2
1 + ...+ anx

2
n = 0,

– type 3 : a1x
2
1 + ...+ an−1x

2
n−1 = xn,

avec a1 ̸= 0.

En fonction des valeurs (positives, négatives ou nulles) des coefficients, on peut étudier le locus
d’une telle équation. Soulignons que, pour passer de l’équation (3.1) à l’une des trois équations
réduites (3.3)–(3.4)–(3.6), nous avons effectué uniquement des changements de variables iso-
métriques. Géométriquement parlant, cela veut dire que le locus de l’équation (3.1) donnée est
isométrique au locus de l’équation réduite correspondant. (On peut même faire en sorte que
l’isométrie soit directe, c’est à dire, ne change pas l’orientation de l’espace lors des changements
de variables.)

Détaillons le cas n = 3 ; on parle alors d’équations quadratiques en trois variables x, y, z, et
le locus d’une telle équation s’appelle une quadrique. L’équation de départ est donc

ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + iz + j = 0,

mais par une isométrie affine on peut la réécrire comme une des trois formes suivantes :

– type 1 : ax2 + by2 + cz2 = 1,

– type 2 : ax2 + by2 + cz2 = 0,

– type 3 : ax2 + by2 = z,

avec a ̸= 0. En écrivant ci-dessous a, b, c ∈ R+
0 , alors selon les valeurs de ces paramètres le locus

d’une telle équation est l’une des figures suivantes dans l’espace R3 :

1. ellipsoïde : ax2 + by2 + cz2 = 1,
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2. hyperboloïde à une nappe : ax2 + by2 − cz2 = 1

3. hyperboloïde à deux nappes : ax2 − by2 − cz2 = 1

4. cylindre elliptique : ax2 + by2 = 1

5. cylindre hyperbolique : ax2 − by2 = 1

6. cône elliptique : ax2 + by2 − cz2 = 0
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7. paraboloïde elliptique : ax2 + by2 = z,

8. paraboloïde hyperbolique : ax2 − by2 = z,

9. cylindre parabolique : ax2 = z

10. cas dégénérés : le vide, un point, une droite, un plan, deux plans sécants, deux plans
parallèles.

L’intersection d’une quadrique avec un plan est toujours une section de conique ; les noms des
quadriques reflètent les sections de conique ainsi obtenues.

De nombreuses propriétés géométriques – parfois bien remarquables ! – des quadriques dans
R3 sont connues. Notamment, on peut décrire leurs symétries, i.e. les symétries orthogonales
envoyant une quadrique sur elle-même 20 ; on peut montrer que certaines quadriques sont des
surfaces de révolution, i.e. la surface est obtenue par rotation d’une section conique plane ; les
cônes, les cylindres, les hyperboloïdes à une nappe et les paraboloïdes hyperboliques sont des
surfaces (doublement) réglées, i.e. des réunions de (deux familles de) droites ; et les cônes et les
cylindres sont même des surfaces développables, i.e. on peut les former “en roulant un plan” !
Voir les références pour les détails, pour des beaux dessins, et pour des applications réelles (p.e.
en architecture, en mécanique, en astronomie, ...).

3.5. Exercices

Exercice 3.5.1 (Inégalité de Cauchy-Schwarz). Soit V un espace euclidien. Montrer que
(x · y)2 ≤ ∥x∥∥y∥ pour tout x, y dans V , et conclure que l’angle non-orienté entre deux vecteurs

20. En fait, une quadrique est de type 1 si et seulement si elle a une symétrie centrale dont le centre n’appartient
pas à la quadrique ; de type 2 si et seulement si elle a une symétrie centrale dont le centre appartient à la quadrique ;
et de type 3 si et seulement si elle n’a pas de symétrie centrale.
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non-nuls est bien défini ; notons-le par θxy. Montrer que, pour tout x′ = αx et y′ = βy avec
α, β ∈ R+

0 , on a θxy = θx′y′ ; ainsi ce scalaire est en fait associé aux demi-droites engendrés par x
et y (plutôt qu’aux vecteurs eux-mêmes). Montrer que Rx = Ry si et seulement si θxy ∈ {0, π}.
Dans R2 muni du produit usuel, calculer les angles non-orientés de x = (1, 0) avec y1 = (1, 1),
y2 = (−1, 1), y3 = (−1,−1) et y4 = (1,−1) ; cela montre bien que l’angle est en effet non-orienté !

Exercice 3.5.2 (Inégalité de Minkowski). Soit V un espace euclidien. Montrer que ∥x+y∥ ≤
∥x∥+ ∥y∥ pour tout x, y ∈ V , et en déduire que la fonction d : V × V → R : (x, y) 7→ ∥x− y∥ est
une distance au sens de la Topologie. Quand a-t-on ∥x+ y∥ = ∥x∥+ ∥y∥ ?

Exercice 3.5.3 (Une distance non-euclidienne). Pour x = (x1, ..., xn) ∈ Rn on note
∥x∥∞ := maxi |xi|. Montrer qu’il s’agit d’une norme qui n’est pas induite par un produit scalaire
sur Rn. Ainsi la fonction d∞(x, y) = ∥x− y∥∞ est une distance non-euclidienne sur Rn.

Exercice 3.5.4 (Procédé de Gram-Schmidt). Rappeler que tout espace euclidien V admet
(au moins) une base orthonormale {e1, ..., en}, c’est à dire, une base dont chaque vecteur est
de norme 1 et tout vecteur est orthogonal à tout autre vecteur. (On peut appliquer le procédé
d’orthonormalisation de Gram-Schmidt.)

Exercice 3.5.5 (Tout espace euclidien est isomorphe à Rn). Soit un espace euclidien V

muni d’une base orthonormale e1, ..., en. Montrer que l’application

f : V → Rn : x 7→ (x1, ..., xn) où x = x1e1 + ...+ xnen

est un isomorphisme faisant correspondre le produit scalaire de V avec le produit scalaire usuel
de Rn (et observer par ailleurs que xi = x · ei, et que donc x =

∑
i(x · ei)ei). Ainsi, tous les

résultats démontrés dans Rn avec le produit scalaire usuel et les notions dérivées (distance, angle,
isométrie, etc.) sont vrais pour tout espace euclidien de dimension n.

Exercice 3.5.6 (Isométries de R2). Rappeler les notions d’isométrie de R2 et de groupe
des isométries de R2 vues dans le cours de Géométrie en L2, et observer qu’il s’agit de cas
particuliers des notions vues dans ce cours-ci (pour l’espace V = R2 muni du produit scalaire
usuel). Rappeler aussi le lien entre isométries de R2 et triangles congruents, la décomposition
de toute isométrie de R2 en réflexions, l’expression analytique pour une isométrie de R2, et la
classification des isométries de R2.

Exercice 3.5.7 (Un drôle de cercle). Dans R2, déterminer un produit scalaire pour lequel
(1, 1), (0, 1

2) est une base orthonormale. Dans l’espace euclidien ainsi construit, donner l’équation
cartésienne du cercle centré à l’origine et de rayon 1.

Exercice 3.5.8 (Rapport comme quotient de distances signées). Pour trois points dis-
tincts mais alignés x, a et b dans un espace euclidien V , montrer que

b− x
a− x

= cos(∡axb) ∥b− x∥
∥a− x∥

.

Reprendre le Théorème de Thales (avec les rapports) pour retrouver la version vue dans le cours
de Géométrie en L2.
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Exercice 3.5.9 (Changement de repère affine). Calculer, dans le repère canonique de R3,
la représentation matricielle de l’application affine g : R3 → R3 telle que :

1. g(0, 0, 0) = (1, 4, 3), g(1, 0, 0) = (4, 4, 4), g(1, 1, 0) = (0, 0, 1), g(1, 1, 1) = (1, 1, 1),
2. g(1, 1, 1) = (0, 1, 1), g(7, 0, 0) = (3,−5, 3), g(7, 7, 0) = (5,−2, 9), g(7, 7, 7) = (11, 0, 6).

S’agit-il d’une isométrie (pour le produit scalaire usuel) ?

Exercice 3.5.10 (Ceci n’est pas une isométrie). Soit un plan euclidien V et supposons
que deux vecteurs a et b sont linéairement indépendants. Montrer que {0, a, b} et {b,−a, b− a}
sont deux repères affines. Donner la description matricielle par rapport à la base a, b de V de
l’unique bijection affine envoyant le premier repère sur le deuxième, et montrer que ce n’est pas
une isométrie. En déduire que ces deux repères ne peuvent pas être orthonormaux en même
temps.

Exercice 3.5.11 (Forme canonique d’une isométrie). Soit un espace euclidien V . Pour
f ∈ O(V ), montrer que ker(id−f) ⊥ im(id−f). En déduire que toute isométrie g = ta◦f ∈ E(V )
s’écrit de manière unique comme g = tb ◦ (tc ◦ f ◦ t−c) où fb = b. Autrement dit, on a g = tb ◦ g′

où g′ est une application affine ayant un point fixe, et b un point fixe de la partie linéaire de g′

(et de g). Montrer que b et g′ sont uniques pour cette propriété, et que l’on a tb ◦ g′ = g′ ◦ tb.
On appelle g = tb ◦ g′ la forme canonique de g.

Solution. Soit x ∈ ker(id− f) et y ∈ im(id− f), c’est à dire, x− fx = 0 et y = z − fz pour un
certain z ∈ V . Alors x ·y = x ·(z−fz) = x ·z−x ·fz = x ·z−fx ·fz = x ·z−x ·z = 0 parce que f
préserve le produit scalaire. Ainsi x ⊥ y pour tout x ∈ ker(id−f) et y ∈ im(id−f). Cela implique
(par le Théorème du Rang) que ces sous-espaces vectoriels sont une décomposition orthogonale
de V . Notons F = ker(id− f) pour le sous-espace des point fixes de f , et donc F⊥ = im(id− f).
Soit g = ta ◦ f , alors on peut décomposer a = aF + aF ⊥ , avec f(aF ) = aF et aF ⊥ = c − fc
pour un certain c ∈ V , d’où g = taF ◦ taF ⊥ ◦ f = taF ◦ (tc ◦ f ◦ t−c), comme voulu. Supposons
maintenant que g = tb1 ◦ (tc1 ◦ f1 ◦ t−c1) = tb2 ◦ (tc2 ◦ f2 ◦ t−c2), et f1b1 = b1 et f2b2 = b2. Par
unicité de partie linéaire et translation, on obtient f = f1 = f2 (et donc fb1 = b1 et fb2 = b2) et
b1 +c1−fc1 = b2 +c2−fc2. Cette deuxième équation implique b1−b2 = (c2−c1)−f(c2−c1), et
ceci est donc un élément de ker(id−f)∩im(id−f), donc 0. Ainsi b1 = b2 et c1−f(c1) = c2−f(c2),
d’où aussi (tc1 ◦ f1 ◦ t−c1) = (tc2 ◦ f1 ◦ t−c2), comme annoncé. Finalement, si g = tb ◦ (ta ◦ f) avec
fb = b, alors on vérifie facilement que tb ◦ (ta ◦ f) = ta ◦ tb ◦ f = ta ◦ tfb ◦ f = (ta ◦ f) ◦ tb par
commutativité des translations. □

Exercice 3.5.12 (Décomposition orthogonale et isométrie linéaire). Soit une décompo-
sition V = E ⊕E⊥ d’un espace euclidien V . Montrer que f(E⊥) = f(E)⊥ pour tout f ∈ O(V ).

Exercice 3.5.13 (Orientation d’un espace euclidien). Soient deux bases orthonormales
{e1, ..., en} et {e′

1, ..., e
′
n} d’un espace vectoriel V , et f ∈ O(V ) l’unique isométrie linéaire en-

voyant l’une base sur l’autre. Lorsque det(f) = 1 on dit que les deux bases sont de même
orientation, et sinon elles sont d’orientation opposée. On “oriente” un espace euclidien en choi-
sissant une base orthonormale que l’on déclare positive (ou directe). Montrer que les f ∈ SO(V )
sont exactement les endomorphismes linéaires qui “préservent distance et orientation”.
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Exercice 3.5.14 (Produit vectoriel—definition). Soit une suite de vecteurs x1, ..., xn dans
un espace euclidien V de dimension n. Pour toute base orthonormale {e1, ..., en} de V , on définit
à l’aide de la base duale (e∗

1, ..., e
∗
n) de l’espace dual V ∗ = Lin(V,R), le déterminant (ou volume

signé)
det(x1, ..., xn) := det(e∗

i (xj))ij ∈ R

de la suite donnée. Montrer que ce déterminant est le même pour toutes les bases orthonormales
de même orientation, et qu’il change de signe entre deux bases d’orientations opposées. Choisis-
sons maintenant une orientation de V , et supposons que {e1, ..., en} est une base d’orientation
directe. Montrer que, pour tout x1, ..., xn−1 ∈ V , l’application

ϕ : V → R : y 7→ det(x1, ..., xn−1, y)

est une forme linéaire sur V (qui est indépendante de la base choisie). Montrer que l’application

ψ : V → V ∗ = Lin(V,R) : x 7→ (y 7→ x · y)

est un isomorphisme d’espaces vectoriels. Conclure que, pour tout x1, ..., xn−1 ∈ V , il existe un
unique z ∈ V tel que

pour tout y ∈ V : det(x1, ..., xn−1, y) = z · y.

On dit alors que ce z ∈ V est le produit vectoriel des x1, ..., xn−1 ∈ V , noté z = x1 × ...× xn−1

(ou aussi z = x1 ∧ ... ∧ xn−1).

Exercice 3.5.15 (Produit vectoriel—propriétés). Soit un espace euclidien V de dimension
n avec une orientation choisie. Montrer que les coordonnées du produit vectoriel x1 × ...× xn−1

par rapport à une base directe {e1, ..., en} sont exactement (det(x1, ..., xn−1, ei))i ∈ Rn. Montrer
que la suite x1, ..., xn−1 ∈ V est libre si et seulement si le produit vectoriel x1× ...×xn−1 est non-
nul. De plus, si la suite x1, ..., xn−1 ∈ V est libre, montrer que le produit vectoriel x1× ...×xn−1

est orthogonal à l’hyperplan (vectoriel) engendré par la suite (cela peut être utile pour calculer
un vecteur normal à un hyperplan donné) ; et si la suite e1, ..., en−1 est orthonormale, alors
e1, ..., en−1, e1 × ...× en−1 est une base orthonormale directe de V .

Exercice 3.5.16 (Produit vectoriel en dimension 3). Soit un espace euclidien V muni
d’une base orthonormale directe {e1, e2, e3}. Montrer, pour x =

∑
i xie1 et y =

∑
yiei, que

x× y = det
(
x2 y2

x3 y3

)
e1 − det

(
x1 y1

x3 y3

)
e2 + det

(
x1 y1

x2 y2

)
e3 = det


x1 y1 e1

x2 y2 e2

x3 y3 e3

 ,
où on développe le dernier “déterminant 21” vers sa troisième colonne. Montrer que

∥x× y∥2 + (x · y)2 = ∥x∥2∥y∥2

21. Ce n’est pas un vrai déterminant (ses éléments ne sont pas tous des scalaires), mais un moyen mnémotech-
nique !
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et en déduire que ∥x × y∥ = ∥x∥∥y∥| sin θ| où θ est l’angle (non-orienté) entre x et y. Ainsi,
pour x et y linéairement indépendents, x× y est l’unique vecteur qui est : orthogonal à x et à y,
de norme ∥x∥∥y∥| sin θ|, et tel que la base x, y, x× y est d’orientation positive. (On trouve cela
parfois comme définition dans les manuels scolaires.)

Exercice 3.5.17 (Exemples de symétries orthogonales). Faire des dessins pour “montrer”
toutes les symétries orthogonales linéaires de R, de R2 et de R3 (et indiquer en particulier les
réflexions et les renversements).

Exercice 3.5.18 (Matrice de Householder). Soit un vecteur v ̸= 0 dans un espace eulidien
V , et H = (Rv)⊥ l’hyperplan orthogonal à v. Montrer que la symétrie orthogonale (linéaire)
d’axe H est donnée par

sH : Rn → Rn : x 7→ x− 2 x · v
∥v∥2

v.

Si V = Rn et on écrit v ∈ Rn comme une colonne (en identifiant Rn = Rn×1), montrer que la
matrice de sH par rapport à la base canonique est I − 2

∥v∥2 vv
t. (Cela s’appelle une matrice de

Householder, d’après l’article [Alston Householder, Unitary triangularization of a nonsymmetric
matrix, Journal of the ACM, 1958].)

Exercice 3.5.19 (Valeurs propres). Soit un espace euclidien V . Montrer que les seules valeurs
propres réelles possibles de f ∈ O(V ) sont +1 et −1. Donner un f ∈ O(V ) sans aucune valeur
propre réelle.

Exercice 3.5.20 (Groupes orthogonaux en petite dimension). Donner explicitement les
éléments de O(n) et de SO(n) pour n ∈ {0, 1, 2}. Vérifier que SO(2) est commutatif et que O(2)
ne l’est pas.

Exercice 3.5.21 (Angle orienté dans un plan euclidien orienté). Soit un plan euclidien V
orienté par une base orthonormale {e1, e2}. Montrer que, si f ∈ SO(V ) admet un point fixe non-
nul, alors f = id (et montrer que cela est faux pour f ∈ O(V )). Montrer que, si x = x1e1 + x2e2

est tel que ∥x∥ = 1, alors la matrice (
x1 −x2

x2 x1

)
∈ SO(2)

correspond avec un élément de SO(V ) envoyant e1 sur x. En déduire que, pour tout x, y ∈ V
tels que ∥x∥ = 1 = ∥y∥, il existe un unique f ∈ SO(V ) tel que fx = y (et montrer que cela est
faux si dim(V ) ≥ 3). On sait (voir un exercice précédent) que tout f ∈ SO(V ) correspond (pour
la base choisie) à une unique matrice

M =
(

cos θ − sin θ
sin θ cos θ

)
avec θ ∈ R modulo 2π.

L’angle orienté de x à y est alors, par définition, le nombre θ ∈ R, déterminé modulo 2π, qui
correspond avec l’unique f ∈ SO(2) envoyant x sur y ; et ce f ∈ SO(V ) est alors la rotation
d’angle orienté θ. Avec ces notations, vérifier que

fx = y si et seulement si
(

cos θ − sin θ
sin θ cos θ

)
=
(
y1 −y2

y2 y1

)(
x1 x2

−x2 x1

)
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(où x = x1e1 + x2e2 et y = y1e1 + y2e2) et en déduire que

cos θ = x · y et sin θ = det(x, y).

Observer que toute base orthonormale directe donne le même résultat pour l’angle θ ; mais
l’orientation choisie est importante : par rapport à la base {e2, e1} (ou toute autre base or-
thonormale d’orientation opposée), l’angle orienté de x à y change de signe (ce qui explique la
terminologie). (Par ailleurs, comment faire pour calculer l’angle orienté entre deux vecteurs de
normes quelconques ?)

Exercice 3.5.22 (Encore un produit semidirect). Soit un plan euclidien V . Montrer que
la suite exacte courte

SO(V ) O(V ) {+1,−1}det

est scindée par l’homomorphisme s : {+1,−1} → O(V ) envoyant −1 sur une réflexion aux choix.
Conclure qu’on a le produit semidirect O(V ) = SO(V )⋊ {+1,−1}, c’est à dire, tout élément de
O(V ) est soit une rotation (i.e. un élément de SO(V )), soit la composée d’une rotation avec la
réflexion choisie 22. (Notons, par ailleurs, que le produit semidirect O(V ) = SO(V )⋊{+1,−1} est
non-commutatif, alors qu’il est composé de deux facteurs commutatifs.) Soit maintenant {e1, e2}
une base orthonormale de V , et considérons l’isomorphisme avec R2 en envoyant cette base sur
la base canonique de R2. On a les isomorphismes induits O(V ) ∼= O(2) et SO(V ) ∼= SO(2), et
la “version matricielle” de la suite exacte courte ci-dessus,

SO(2) O(2) {+1,−1}.det

Pour scinder cette suite, choisissons maintenant la réflexion “d’axe X”, dont la matrice est

S =
(

1 0
0 −1

)
,

et rappelons que la matrice d’une rotation est typiquement

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
avec θ ∈ R modulo 2π.

Montrer que RθS = SR−θ = R θ
2
SR− θ

2
, et conclure qu’il s’agit de la matrice de la réflexion dont

22. On a “la même chose” en toute dimension n, mais pour n ̸= 2 le groupe SO(n) est moins facile à décrire.
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l’axe fait un angle de θ avec “l’axe X” de R2 ; notons-là par Sθ.

0

x

X

Y

x′

1
2θ

−θ

θ

Vérifier que

RθRϕ = Rθ+ϕ RθSϕ = Sθ+ϕ SθRϕ = Sθ−ϕ SθSϕ = Rθ−ϕ

et interpréter géométriquement. (On a ainsi dressé la table du produit dans le groupe O(2).)

Exercice 3.5.23 (Isométrie linéaire de matrice orthogonale 2×2). Déterminer l’isométrie
f : R2 → R2 : X 7→ AX (pour la géométrie euclidienne usuelle) lorsque A est :

1.
(

0 1
1 0

)

2.
( 1

2 −
√

3
2√

3
2

1
2

)

3.

 1√
2

1√
2

1√
2 − 1√

2


Exercice 3.5.24 (Rotations et nombres complexes). Montrer que S1 = {z ∈ C | |z| = 1}
est un groupe (commutatif) pour la multiplication. Montrer que l’application

φ : S1 → SO(2) : a+ ib 7→
(
a −b
b a

)

est un isomorphisme de groupes. Montrer que

ψ : R→ S1 : θ 7→ eiθ = cos θ + i sin θ

est un homomorphisme surjectif de groupes (pour l’addition sur R) dont le noyau est 2πZ. Ainsi
l’isomorphisme SO(2) ∼= S1 ∼= R/2πZ identifie tout élément de SO(2) avec un nombre θ ∈ R,
déterminé à un multiple entier de 2π près : on retrouve l’angle d’une rotation.

Exercice 3.5.25 (Groupe diédral : les symétries d’un polygone régulier). Dans le plan
euclidien orienté R2 (“le plan usuel”), on considère un polygone régulier à n ≥ 3 sommets,
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inscrit dans le cercle de centre (0, 0) et de rayon 1. Le groupe diédral Dn est, par définition,
le sous-groupe de O(R2) laissant globalement invariant ce polygone. (Plus généralement, on
peut considérer le groupe des isométries laissant globalement invariant un polygone régulier à n
sommets inscrit dans un cercle quelconque ; on obtiendra un groupe isomorphe.)

Si n est impair alors toute réflexion orthogonale dont l’axe relie un sommet au milieu du côté
opposé est un élément de Dn ; si n est pair alors toute réflexion orthogonale dont l’axe est soit
une diagonale, soit une médiane, est un élément de Dn. De toute façon, Dn contient exactement
n réflexions distinctes. Puis, quelque soit la parité de n, Dn contient exactement n rotations
distinctes. Ainsi, on trouve explicitement les 2n éléments distincts de Dn. L’ensemble de ces
rotations

Rn = {Rθ | θ = k
2π
n

pour 0 ≤ k ≤ n− 1}

est un sous-groupe (cyclique d’ordre n) de Dn. Si on note S pour une réflexion “au choix” dans
Dn, alors aussi

S = {id, S}

est un sous-groupe (cyclique d’ordre 2) de Dn. On vérifie sans difficulté que Dn = Rn ⋊ S ; et en
remplaçant ces sous-groupes cycliques “géométriques” par des groupes cycliques “abstraites” on
peut définir “abstraitement” que Dn = Cn ⋊ C2. Un grand nombre de propriétés intéressantes
de Dn sont connues ; voir les références.

Exercice 3.5.26 (Sous-groupes finis de O(2)). Montrer que tout sous-groupe fini de SO(2)
est cyclique. En déduire que tout sous-groupe fini de O(2) est soit un groupe cyclique, soit un
groupe diédral (y compris les “cas dégénérés” pour n = 1 et n = 2). Ainsi, les seuls sous-groupes
finis de O(2) sont des groupes de symétries de polygones réguliers (hormis les cas dégénérés) !

Exercice 3.5.27 (Permutations d’une base orthonormale). Soit V un espace euclidien
muni d’une base orthonormale {e1, ..., en}. Montrer que toute permuation de ces vecteurs de base
produit un élément de O(V ). Pour n ∈ {1, 2, 3}, déterminer la nature géométrique de chaque
permutation. Faire des dessins !

Exercice 3.5.28 (Rotation = 2 renversements). Soit V un espace euclidien de dimension
3. Montrer que s : V → V est une réflexion si et seulement si −s : V → V est un renversement (=
symétrie orthogonale dont l’axe est une droite). Observer qu’un renversement est une rotation
d’angle π. Conclure que toute rotation est la composée de deux rotations d’angle π (et préciser
les axes). Faire un dessin !

Exercice 3.5.29 (Matrice d’isométrie linéaire donnée). Dans R3, donner la représentation
matricielle de la rotation

0

aθ
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où a = (1, 2, 1) et θ = π/6. Donner aussi la matrice de la rotaflexion déterminée par ces données.
(On peut éventuellement utiliser un logiciel de calcul.)

Exercice 3.5.30 (Isométrie linéaire de matrice orthogonale 3×3). Déterminer l’isométrie
f : R3 → R3 : X 7→ AX (pour la géométrie euclidienne usuelle) lorsque A est :

1.


3
4

√
3√
8 −1

4

−
√

3√
8

1
2 −

√
3√
8

−1
4

√
3√
8

3
4



2.


0 −

√
2

2 −
√

2
2

−
√

2
2 −1

2
1
2

−
√

2
2

1
2 −1

2



3.


−1

4

√
3√
8

3
4

−
√

3√
8

1
2 −

√
3√
8

3
4

√
3√
8 −1

4



4.


1
2 0 −

√
3

2
0 −1 0

√
3

2 0 1
2



5.


2
3 −1

3
2
3

2
3

2
3 −1

3
−1

3
2
3

2
3



6.


7
9 −4

9 −4
9

−4
9

1
9 −8

9
−4

9 −8
9

1
9


Attention : pour déterminer une rotation ou rotaflexion, il faut donner l’axe, l’angle et le sens !
(On peut éventuellement utiliser un logiciel de calcul.)

Exercice 3.5.31 (Un sous-groupe étonnant). Montrer que l’application

ϕ : O(2)→ SO(3) : M 7→
(
M 0
0 det(M)

)

est un homomorphisme injectif de groupes. Ainsi O(2) peut être identifié avec un sous-groupe
de SO(3) (et tout sous-groupe de O(2) est aussi un sous-groupe de SO(3)). Interprétation
géométrique des éléments de ce sous-groupe ?

Exercice 3.5.32 (Projections orthogonales affines). Soit un espace affine V . Montrer que
g = ta ◦ f : V → V est une projection affine (c’est à dire, g = tc ◦ f ◦ t−c pour une projection
linéaire f) si et seulement si g ◦ g = g, si et seulement si f ◦ f = f et fa = 0 (et alors c = a).
Donner l’axe et la direction de g, et montrer que ce dernier est déterminé à parallélisme près.
Supposons maintenant que V est un espace euclidien muni d’une base orthonormale. Observer
qu’une projection orthogonale est entièrement déterminée par son axe. Donner des conditions
nécessaires et suffisantes sur la représentation matricielle de g pour que g soit une projection
orthogonale. (Penser aux valeurs propres et la diagonalisation !)
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Exercice 3.5.33 (Symétries orthogonales affines). Soit un espace affine V . Montrer que
g = ta ◦f : V → V est une symétrie affine (c’est à dire, g = tc ◦f ◦ t−c pour une symétrie linéaire
f) si et seulement si f ◦ f = id et fa = −a (et alors c = 1

2a). Donner l’axe et la direction de
g, et montrer que ce dernier est déterminé à parallélisme près. Supposons maintenant que V
est un espace euclidien. Montrer que g est une isométrie si et seulement si g est une symétrie
orthogonale. Observer qu’une symétrie orthogonale est entièrement déterminée par son axe.
Supposons ensuite qu’une base orthonormale est donnée. Donner des conditions nécessaires et
suffisantes sur la représentation matricielle de g pour que g soit une symétrie orthogonale. (Penser
aux valeurs propres et la diagonalisation !)

Exercice 3.5.34 (Approximation par projection orthogonale). Soit un espace euclidien
V , et un sous-espace affine A ⊆ V . Notons p : V → V la projection orthogonale (affine) sur A.
Déduire du Théorème de Pythagoras que ∥x− p(x)∥ ≤ ∥x− a∥ pour tout x ∈ V et tout a ∈ A.
Autrement dit, la projection orthogonale de x sur A est la meilleure approximation (au sens de
la distance euclidienne) de x par un élément de A.

Exercice 3.5.35 (Exemple de projection). Dans R3 avec sa base canonique, donner la
représentation matricielle de la projection d’axe P : x+ y+ z = 1 et de direction D : x = y = z.
S’agit-il d’une projection orthogonale (pour le produit scalaire usuel) ?

Exercice 3.5.36 (Projection orthogonale sur une droite). Soit un espace euclidien V .
Montrer que la projection orthogonale (linéaire) sur une droite (vectorielle) D0 = Rv est

pD0 : V → V : x 7→ x · v
v · v

v.

En déduire que la projection orthogonale (affine) sur une droite (affine) D = ab est

pD : V → V : x 7→ (b− x) · (b− a)
(b− a) · (b− a)a+ (x− a) · (b− a)

(b− a) · (b− a) b.

Exercice 3.5.37 (Réflexion par un hyperplan). Soit un espace euclidien V . Montrer que
la réflexion (linéaire) par un hyperplan (vectoriel) H0 = (Rv)⊥ est

rH0 : V → V : x 7→ x− 2x · v
v · v

v.

En déduire que l’unique réflexion (affine) envoyant un point a sur un point distinct b est

rH : V → V : x 7→ x− 2 x · (a− b)
(a− b) · (a− b)(a− b) + (a+ b) · (a− b)

(a− b) · (a− b)(a− b).

Illustrations : https://www.geogebra.org/m/vey9uxrj et https://www.geogebra.org/m/dzjkpxjs.

Exercice 3.5.38 (Projections et symétries). De chaque application affine donnée ci-dessous
sur R3 (considéré avec sa géométrie euclidienne usuelle), déterminer s’il s’agit d’une projection
(orthogonale), d’une symétrie (orthogonale), d’un autre type d’isométrie, ou de aucun des cas
particuliers précédents. Pour les projections et les symétries : déterminer direction et axe.
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Exercice 3.5.39 (Représenter une isométrie affine). Dans R3, donner la représentation
matricielle de la rotation

a
b

θ

lorsque a = (1, 0, 1), b = (2, 2, 2) et θ = π/6. Donner aussi la représentation matricielle de la
rotaflexion déterminée par cette rotation suivie de la réflexion par le plan orthogonal passant
par a. (On peut éventuellement utiliser un logiciel de calcul.)

Exercice 3.5.40 (Réflexions affines). Soit un hyperplan vectoriel H0 ⊆ V d’un espace vecto-
riel V de dimension n ≥ 1, et s0 : V → V la réflexion linéaire d’axe H0. Si H = H0 +a = H0 + b,
montrer que

ta ◦ s0 ◦ t−a = tb ◦ s0 ◦ t−b.

Ainsi, la réflexion affine d’axe H est déterminée par la direction H0 de H et n’importe quel
élément a ∈ H. Illustrer par un dessin dans R2 avec sa géométrie euclidienne usuelle.

Exercice 3.5.41 (Rotations affines). Soit une droite vectorielle D0 ⊆ V d’un espace vectoriel
V de dimension 3, et r0 : V → V la rotation linéaire d’axeD0 et d’angle θ. SiD = D0+a = H0+b,
montrer que

ta ◦ r0 ◦ t−a = tb ◦ r0 ◦ t−b.

Ainsi, la rotation affine d’axe D et d’angle θ est déterminée par la direction D0 de D, nn’importe
quel élément a ∈ D et l’angle θ. Illustrer (tant bien que mal) par un dessin dans R3 avec sa
géométrie euclidienne usuelle.

Exercice 3.5.42 (Déterminer une isométrie affine). Donner le type, les éléments géomé-
triques, et les points fixes de l’isométrie g : R3 → R3 : X 7→ AX + B (pour la géométrie usuelle
de R3) lorsque A et B sont :
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(On peut éventuellement utiliser un logiciel de calcul.)

Exercice 3.5.43 (Tournée générale). Exprimer des conditions sur un triangle abc dans un
plan euclidien V pour qu’il existe une isométrie envoyant a sur b, b sur c et c sur a. Montrer que
cette isométrie est alors unique, et déterminer-la à l’aide de ses points fixes. Dans R2 muni du
produit scalaire usuel et de la base canonique, donner la description matricielle de cette isométrie
lorsque a = (0, 1), b = ( 1√

3 , 0) et c = ( −1√
3 , 0).

Exercice 3.5.44 (Hyperplan médiateur). L’hyperplan médiateur de deux points distincts
a et b d’un espace euclidien V est l’unique hyperplan affine H ⊆ V orthogonal à ab et passant
par le milieu m de a et b. Montrer que H contient exactement les points équidistants à a et b.
Indication : exprimer que pm ⊥ ab.

Exercice 3.5.45 (Repères affines congruents). Soient des repères affines {a0, ..., an} et
{b0, ..., bn} d’un espace euclidien V et notons g : V → V l’automorphisme affine déterminée par
g(ai) = bi. Montrer que g est une isométrie si et seulement si dist(ai, aj) = dist(bi, bj) pour tout
i, j ∈ {0, ..., n}. Indication : généraliser la démonstration vue en L2 pour les isométries de R2,
en remplaçant des droites médiatrices par des hyperplans médiateurs.

Exercice 3.5.46 (Théorème de la médiane). Soit un parallélogramme abcd dans un espace
euclidien V . Montrer que

dist(a, b)2 + dist(b, c)2 + dist(c, d)2 + dist(d, a)2 = dist(a, c)2 + dist(b, d)2.

En déduire le Théorème de la médiane : dans tout triangle abc, si m est le milieu de bc alors

dist(a, b)2 + dist(a, c)2 = 2 dist(a,m)2 + 1
2 dist(b, c)2.

Conclure que abc est rectangle en a si et seulement si m est le centre du cercle circonscrit de
abc.
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Exercice 3.5.47 (Dilatations d’un espace euclidien). Soit un espace euclidien V . Montrer
que toute dilatation d ∈ D(V ) préserve les angles et envoie des sphères sur des sphères (et
préciser l’effet sur le centre et le rayon). Quand est-ce que d est une isométrie ?

Exercice 3.5.48 (Droite d’Euler). Soit un triangle abc dans le plan R2 (avec sa géométrie
euclidienne vue en L2) ; ainsi les trois médiatrices du triangle abc sont concourantes au centre o du
cercle circonscrit. (C’est vrai dans un plan euclidien quelconque.) Sachant que toute homothétie
préserve les angles (voir un exercice précédent), utiliser l’homothétie abc 7→ a′b′c′ de centre g et
rapport −2 (voir un exercice précédent) pour identifier les hauteurs de abc avec les médiatrices
de a′b′c′ et en déduire que les hauteurs d’un triangle sont concourrantes en un point h, appelé
l’orthocentre.

b

c

g

a b

o

c

a b

c

a

h

Conclure que l’isobarycentre g, le centre o du cercle circonscrit et l’orthocentre h sont alignés
(et donner leur rapport) : ces trois points se trouve sur la droite d’Euler du triangle abc.

b

c

o g h

a

Exercice 3.5.49 (Cercle des neuf points). Soit un triangle abc dans le plan R2 (avec sa
géométrie euclidienne vue en L2) et g son isobarycentre. Montrer que l’homothétie de centre g
et rapport −1

2 (étudiée dans un exercice précédent) envoie le cercle circonscrit de abc (de centre
o) sur un cercle passant par les trois milieux des côtés ; notons n pour le centre de ce cercle
médian :

b

c

o g

a

n

Observer que le rayon du cercle médian est la moitié du rayon du cercle circonscrit. Montrer
qu’aussi l’homothétie de centre h et rapport 1

2 envoie o sur n (utiliser les résultats d’un exercice
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précédent), et ainsi le cercle circonscrit sur le cercle médian :

b

c

o
h

a

n

Par conséquent, le cercle médian passe aussi par les trois milieux des segments ha, hb et hc. En
déduire que la symétrie centrale de centre n envoie les milieux de ab, bc et ac sur les milieux de
hc, ha et hb :

b

c

a

n

Montrer ensuite que l’homothétie de centre c et de rapport 2 envoie (par ce qui précède) le milieu
de ch sur h, et donc le cercle médian sur un cercle passant par a, b et h.

b

c

o
h

o′

a

n

Finalement, montrer que la réflexion d’axe ab envoie ce dernier cercle sur le cercle circonscrit de
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abc (on utilise que toute réflexion est une isométrie) :

b

c

h

h′

a

Ainsi le pied de la hauteur de c sur ab est le milieu du segment hh′, et se trouve (par l’homothétie
de centre h et rapport 1

2) aussi sur le cercle médian ; et idem pour les deux autres hauteurs de
abc. Somme toute, le centre n du cercle médian est sur la droite d’Euler, et le cercle médian
passe par neuf points remarquables : on l’appelle le cercle des neuf points de abc.

b

c

n
o g

h

a

Vérifier finalement que [g, h;n, o] = −1, encore une division harmonique !

Exercice 3.5.50 (Similitude linéaire—définition). Soit un espace euclidien V de dimen-
sion n ≥ 1. Pour une application linéaire f : V → V non-constante, montrer l’équivalence des
conditions suivantes :

(a) (“f multiplie les distances”) il existe λ ∈ R+
0 tel que ∥fx − fy∥ = λ∥x − y∥ pour tout

x, y ∈ V ,
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(b) il existe λ ∈ R+
0 tel que ∥fx∥ = λ∥x∥ pour tout x ∈ V ,

(c) il existe λ ∈ R+
0 tel que λ−1f ∈ O(V ),

(d) il existe κ ∈ R+
0 tel que fx · fy = κ(x · y) pour tout x, y ∈ V ,

(e) (“f péserve l’orthogonalité”) x · y = 0 implique fx · fy = 0 pour tout x, y ∈ V ,
(f) (“f préserve les angles”) f est bijective 23 et fx · fy

∥fx∥∥fy∥
= x · y
∥x∥∥y∥

pour tout x, y ∈ V \{0}.

On dit alors que f est une similitude (linéaire) (et que λ ∈ R+
0 est son rapport).

Solution “analytique”. Les équivalences (a⇔ b⇔ c⇔ d) sont faciles. Notons que l’on a λ =
√
κ

et ker(f) = {0}. Ainsi (a, b, c, d) impliquent facilement (e) et (f). Puisqu’aussi (f ⇒ e) est
évident, il suffit de montrer (e ⇒ b). Supposons donc que f est une application linéaire non-
constante qui préserve l’orthogonalité. Si x · y ̸= 0 (et donc en particulier x ̸= 0 ̸= y) on pose

z = y − x · y
∥x∥2

x

et alors
x · z = x · (y − x · y

∥x∥2
x) = x · y − x · y

∥x∥2
(x · x) = 0,

donc par hypothèse et par linéarité de f on peut vérifier que

0 = fx · fz = fx · f(y − x · y
∥x∥2

x) = fx · (fy − x · y
∥x∥2

fx) = fx · fy − x · y
∥x∥2

(fx · fx),

c’est à dire,
fx · fy
x · y

= ∥fx∥
2

∥x∥2
.

En échangeant x et y dans ce raisonnement, on trouve aussi

fx · fy
x · y

= ∥fy∥
2

∥y∥2
,

et on peut conclure que, pour tout x · y ̸= 0,

∥fx∥
∥x∥

= ∥fy∥
∥y∥

.

Si x ̸= 0 ̸= y mais x · y = 0, alors x · (x + y) ̸= 0 et y · (x + y) ̸= 0 (et donc x + y ̸= 0), et par
l’argument ci-dessus on a

∥fx∥
∥x∥

= ∥f(x+ y)∥
∥x+ y∥

= ∥fy∥
∥y∥

.

Somme toute, puisque f ̸= 0 par hypothèse, on a une fonction constante

V \ {0} → R+
0 : x 7→ ∥fx∥

∥x∥
,

c’est à dire, il existe λ ∈ R+
0 tel que ∥fx∥ = λ∥x∥ pour tout x ̸= 0 dans V ; et cette condition et

bien sûr aussi satisfaite pour x = 0. On a donc montré (b). □

23. Cette condition assure que fx ̸= 0 si x ̸= 0, et on peut donc avoir ∥fx∥ dans le dénominateur.
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Exercice 3.5.51 (Groupe des similitudes linéaires). Soit un espace euclidien V de dimen-
sion n ≥ 1. Montrer que l’ensemble S(V ) des similitudes linéaires est un sous-groupe de GL(V ),
et contient O(V ) comme sous-groupe (une isométrie étant une similitude de rapport 1). Montrer
que l’application

S(V )→ R+
0 ×O(V ) : f 7→ (λ, λ−1f)

(où λ est le rapport de f) est un isomorphisme de groupes (pour la multiplication sur R+
0 ).

Montrer que l’application

H(V )→ S(V ) : λid 7→ |λ|(sgn(λ)id)

est un homomorphisme injectif de groupes. (Ainsi une homothétie linéaire de rapport λ ∈ R0

est une similitude linéaire de rapport |λ|.)

Exercice 3.5.52 (Rectangles, losanges, carrés). On travaille dans un espace euclidien V .
On dit qu’un parallélogramme abcd est un rectangle si ses quatre angles sont droits, un losange si
ses quatre côtés sont de même longueur, et un carré si c’est à la fois un rectangle et un losange.

Montrer qu’un parallélogramme abcd est
(a) un rectangle si et seulement si un angle est droit,
(b) un losange si et seulement si ses diagonales sont orthogonales,
(c) un carré si et seulement si un angle est droit et ses diagonales sont orthogonales.

(Indication : utiliser les différentes caractérisations d’un parallèlogramme, vues dans un exercice
du premier chapitre.)

Solution. Dans un parallélogramme abcd on a,

a b

cd

par un exercice d’un chapitre précédent, que a−d = b−c et a−b = d−c. Ainsi, si (par exemple)
l’angle en a est droit,

a b

cd

alors de (b − a) · (d − a) = 0 on obtient également (b − a) · (c − b) = 0, (c − d) · (d − a) = 0 et
(c−d)·(c−b) = 0 ; c’est à dire, les trois autres angles sont aussi droits. Par ailleurs, toujours dans
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ce même exercice d’un chapitre précédent, on a vu que les diagonales dans un parallélogramme
abcd se coupent en leur milieu.

a b

cd

m

C’est à dire, on a toujours ∥b−m∥ = ∥d−m∥ et aussi b−m = −(d−m) (et de même pour les
autres demi-diagonales). Mais (pour tout parallèlogramme) on vérifie aussi facilement que

∥a− b∥2 = ∥a−m∥2 − 2(a−m) · (b−m) + ∥b−m∥2

et de même
∥a− d∥2 = ∥a−m∥2 − 2(a−m) · (d−m) + ∥d−m∥2.

Si maintenant les diagonales sont orthogonales, c’est à dire (a−m)(b−m) = 0 = (a−m)(d−m),
alors on obtient ∥a− b∥ = ∥a− d∥ (et on répète l’argument pour les autres côtés). (Ceci est, en
gros, le Théorème de Pythagoras.) Réciproquement, si ∥a− b∥ = ∥a− d∥, alors on déduit que

(a−m) · (b−m) = (a−m) · (d−m) = (a−m)(−(b−m)),

et cela implique que ce produit scalaire est nul, donc que les diagonales sont orthogonales. □

Exercice 3.5.53 (Similitudes affines). Soit V un espace euclidien, et g ∈ GA(V ) un auto-
morphisme affine. Montrer l’équivalence de :

(a) g = tf avec t ∈ T (V ) et f une similitude linéaire,
(b) g préserve les angles,
(c) g préserve l’orthogonalité,
(d) g = hg′ avec h une homothétie (affine) et g′ une isométrie (affine),
(e) g multiplie les distances par un facteur λ ∈ R+

0 .

Solution “géométrique”. Les implications (a⇒ b⇒ c) et (d⇒ a) ainsi que l’équivalence (d⇔ e)
sont triviales. Pour (c ⇒ d), soit un repère affine orthonormale {a0, a1, ..., an} de V , alors tout
triple a0aiaj définit un (unique) carré :

a0 ai

aj ai + aj − a0

Par un exercice précédent, on sait qu’il s’agit de parallélogrammes dont les côtés et les diago-
nales sont perpendiculaires. Si g est un automorphisme affine préservant l’orthogonalité, alors g
envoie ces carrés sur des (vrais) carrés ayant deux-à-deux un côté commun : ainsi les vecteurs
(gai− ga0)i ̸=0 sont de même longueur, disons de longueur λ ∈ R+

0 , et deux-à-deux orthogonaux.
Autrement dit, l’automorphisme affine g′ := hga0,λ−1g (où hga0,λ−1 = tga0 ◦ (λ−1id) ◦ t−ga0 est
l’homothétie affine de centre g0 et de rapport λ−1) envoie un repère affine orthonormale sur un
repère affine orthonormale, et est donc une isométrie affine. □
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Annales

DS de mars 2025

1. Soit V un espace vectoriel de dimension finie sur un corps K tel que car(K) ̸= 2.
(a) Donner la définition de ‘sous-espace affine’ dans V .
(b) Démontrer que, par deux points distincts a, b ∈ V , passe une et une seule droite affine ab.
(c) Donner la définition de ‘milieu’ de deux points a, b ∈ V .
(d) On considère maintenant deux droites affines disctinctes ab et ac. Montrer par un calcul

barycentrique que, pour tout point x ∈ V en dehors de ces deux droites, il existe x1 ∈ ab
et x2 ∈ ac tel que x est le milieu de x1 et x2.

a

b

c

x

x1

x2

2. Soit abc un triangle dans un espace vectoriel de dimension finie.
(a) Enoncer (sans démonstration) le lemme vu en cours caractérisant la colinéarité de trois

points x, y, z ∈ ⟨a, b, c⟩ à l’aide d’un déterminant.
(b) Enoncer et démontrer le Théorème de Menelaos vu en cours.

3. On travaille dans l’espace vectoriel R3.
(a) Donner l’équation cartésienne du plan affine P de direction R(−1, 1, 1)+R(1, 1, 0) et passant

par (1, 0, 1).
(b) Donner l’équation cartésienne du plan affine Q passant par (0, 2, 1) et parallèle au plan

d’équation cartésienne 3x− y + z = −1.
(c) Donner la direction et un point de passage de l’intersection P ∩Q.

4. Ci-dessous V et W sont des espaces vectoriels de dimension finie.
(a) Donner la définition de ‘application affine’ g : V →W vue en cours.
(b) Démontrer qu’une application affine g : V →W préserve les barycentres.

Examen de mai 2025

1. Soit un espace vectoriel V sur un corps K.
(a) Donner la définition de ‘partie affinement libre’ {a0, ..., ak} ⊆ V .
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(b) Montrer que, si {a0, ..., ak} ⊆ V est une partie affinement libre, alors tout x ∈ ⟨a0, ..., ak⟩
s’écrit d’au plus une manière comme un barycentre des ai’s.

(c) Dans le plan R2 (avec sa géométrie euclidienne habituelle), exprimer les points x, y et z
comme barycentre des points a, b et c dans la situation suivante :

a c

x

b

z

y

2. Soit V un espace vectoriel de dimension finie sur un corps K.
(a) Donner la définition de ‘dilatation’ d ∈ D(V ).
(b) Montrer qu’une dilatation envoie toute droite de V sur une droite parallèle.
(c) Donner (sans démonstration) la classification des dilatations selon leurs points fixes.
(d) Soient deux droites affines distinctes sécantes en un point x dans V , et trois points distincts

sur chaque droite, disons a, b, c et a′, b′, c′, qui sont aussi distincts du point x. Montrer que,
si ab′ // bc′ et a′b // b′c, alors aussi aa′ // cc′.

a
b

c

x

a′
b′

c′

(e) Pour V = R3 et K = R, existe-t-il une dilatation d ∈ D(V ) telle que d(−2, 1, 3) = (−2, 1, 3)
et d(1, 1, 0) = (4,−1, 2) ? Si oui, donner-la ; sinon, expliquer pourquoi pas.

3. Soit V un espace euclidien.
(a) Définir les groupes O(V ) et E(V ), et exprimer leur relation (sans démonstration).
(b) Montrer que tout f ∈ O(V ) preséserve le produit scalaire.
(c) Définir ‘angle (non-orienté)’ ∡abc pour trois points a, b, c ∈ V .

a
b

c
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(d) Montrer que tout g ∈ E(V ) préserve les angles.

4. Soit l’application linéaire

f : R3 → R3 :


x

y

z

 7→


0 1 0
0 0 1
1 0 0



x

y

z


et considérons l’espace vectoriel R3 avec sa géométrie euclidienne usuelle.
(a) Montrer que f ∈ O(R3).
(b) Déterminer le type et les éléments géométriques de f .

Rattrapage de juin 2025

1. Soit un espace vectoriel V de dimension finie sur un corps K.
(a) Donner la définition de ‘sous-espace affine’.
(b) Démontrer que l’intersection de sous-espaces affines est un sous-espace affine ou vide.
(c) Dans R3, calculer l’intersection de A = R(−1, 0, 1)+R(1, 1, 1)+(2,−1, 2) et B : 3x−2y+z =

2.

2. Pour les deux parallélogrammes a1a2a3a4 et b1b2b3b4 ci-dessous (dans le plan R2), montrer que
les milieux mi des segments aibi forment aussi un parallélogramme.

a1

b1a2

b2

a3

b3
a4

b4

m1 m2

m3m4

3. Soient V et W des espaces vectoriels de dimensions finies sur un corps K.
(a) Montrer que, pour toute translation t : V → V et toute application linéaire f : V → W , il

existe une unique translation t′ : W →W , telle que f ◦ t = t′ ◦ f .
(b) Montrer que, si t ◦ f = t′ ◦ f ′ pour deux translations t, t′ : V → V et deux applications

linéaires f, f ′ : V →W , alors t = t′ et f = f ′.
(c) Donner la définition de ‘application affine’ entre deux espaces vectoriels. Pourquoi les points

(a) et (b) sont-ils pertinents pour cette définition ?

4. Soit abc un triangle dans un plan vectoriel V sur un corps K, et notons par p : V → V la
projection affine d’axe ab et de direction ac.
(a) Déterminer p(a), p(b) et p(c).
(b) En déduire que la description explicite de p en termes de barycentres est

p : V → V : (αa+ βb+ γc) 7→ ((α+ γ)a+ βb).

(c) Pour a = (−1, 1), b = (0, 2) et c = (3,−1) dans V = R2, calculer l’image par p de x = (2, 3).

117



Annales

5. Soit l’application linéaire

f : R3 → R3 :


x

y

z

 7→


7
9 −4

9 −4
9

−4
9

1
9 −8

9
−4

9 −8
9

1
9



x

y

z


et considérons l’espace vectoriel R3 avec sa géométrie euclidienne usuelle.
(a) Montrer que f ∈ O(R3).
(b) Déterminer le type et les éléments géométriques de f .
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