Sans documents, sans calculatrice.

- 1. Soit un espace vectoriel V sur un corps K.
 - (a) Donner la définition de 'partie affinement libre' $\{a_0, ..., a_k\} \subseteq V$.
 - (b) Montrer que, si $\{a_0,...,a_k\}\subseteq V$ est une partie affinement libre, alors tout $x\in \langle a_0,...,a_k\rangle$ s'écrit d'au plus une manière comme un barycentre des a_i 's.
 - (c) Dans le plan \mathbb{R}^2 (avec sa géométrie euclidienne habituelle), exprimer les points x, y et zcomme barycentre des points a, b et c dans la situation suivante:

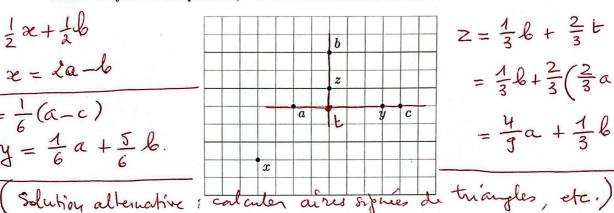
$$a = \frac{1}{2}x + \frac{1}{2}b$$

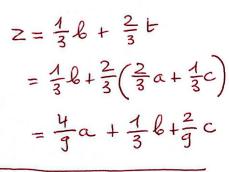
$$\Rightarrow x = 2a - b$$

$$y - c = \frac{1}{6}(a - c)$$

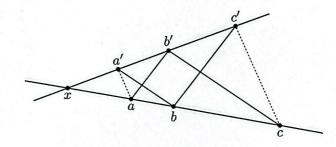
$$\Rightarrow y = \frac{1}{6}a + \frac{5}{6}b.$$

$$(3b.1)$$





- 2. Soit V un espace vectoriel de dimension finie sur un corps K.
 - (a) Donner la définition de 'dilatation' $d \in D(V)$.
 - (b) Montrer qu'une dilatation envoie toute droite de V sur une droite parallèle.
 - (c) Donner (sans démonstration) la classification des dilatations selon leurs points fixes.
 - (d) Soient deux droites affines distinctes sécantes en un point x dans V, et trois points distincts sur chaque droite, disons a, b, c et a', b', c', qui sont aussi distincts du point x. Montrer que, si $ab' \parallel bc'$ et $a'b \parallel b'c$, alors aussi $aa' \parallel cc'$.

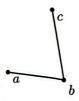


(e) Pour $V = \mathbb{R}^3$ et $K = \mathbb{R}$, existe-t-il une dilatation $d \in D(V)$ telle que d(-2,1,3) = (-2,1,3)et d(1,1,0) = (4,-1,2)? Si oui, donner-la; (sinon,) expliquer pourquoi pas.

> NON, pas possible, can: d'est nécessairement une homothètre affine, mais les points (-2,1,3), (1,1,0), (4,-1,2) ne sont pas alignes! (autres raisonnements

3. Soit V un espace euclidien.

- (a) Définir les groupes O(V) et E(V), et exprimer leur relation (sans démonstration).
- (b) Montrer que tout $f \in O(V)$ preséserve le produit scalaire.
- (c) Définir 'angle (non-orienté)' $\angle abc$ pour trois points $a, b, c \in V$.



(d) Montrer que tout $g \in E(V)$ préserve les angles.

4. Soit l'application linéaire

$$f \colon \mathbb{R}^3 \to \mathbb{R}^3 \colon \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

et considérons l'espace vectoriel \mathbb{R}^3 avec sa géométrie euclidienne usuelle.

- (a) Montrer que $f \in O(\mathbb{R}^3)$.
- (b) Déterminer le type et les éléments géométriques de f.

(a) Notons
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
 alors $A^{\xi}.A = I$

donc $A \in O(3)$, donc $f \in O(R^3)$

(b) $det(A) = 1$ donc $1 = 1$ donc axe $1 = 1$ donc $1 = 1$ donc