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Abstract. In the context of categorical topology, more precisely that of T-categories [Hof07], we define
the notion of T-colimit as a particular colimit in a V-category. A complete and cocomplete V-category
in which limits distribute over T-colimits, is to be thought of as the generalisation of a (co-)frame to this
categorical level. We explain some ideas on a T-categorical version of “Stone duality”, and show that
Cauchy completeness of a T-category is precisely its sobriety.

Introduction

Let X be a topological space, then Ω(X), its collection of open subsets, is a frame: a complete lat-
tice in which finite infima distribute over arbitrary suprema. If f : X −→ Y is a continuous function
between topological spaces, then its inverse image Ω( f ) : Ω(Y) −→ Ω(X) is a frame homomorphism, i.e.
a (necessarily order-preserving) function that preserves finite infima and arbitrary suprema. Thus we ob-
tain a contravariant functor, Ω : Topop −→ Frm, from the category of topological spaces and continuous
functors to that of frames and frame homomorphisms. It is well known that this functor admits a left
adjoint

Topop
⊥

Ω
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Frm

which assigns to any frame F the topological space pt(F) of its points: it is the set Frm(F, 2) of frame
homomorphisms from F to the two-element chain, with open subsets {{p ∈ pt(F) | p(a) = 1} | a ∈ F}.
If the natural continuous comparison ηX : X −→ pt(Ω(X)) is bijective (in which case it actually is a
homeomorphism), then X is said to be sober. (And because X is T0 if and only if ηX is injective, we
get that a T0 space is sober if and only if ηX is surjective.) Much more can be said about the interplay
between topological spaces and frames; we refer to the classic [Joh86].

Since M. Barr’s work [Bar70] we know that topological spaces and continuous functions are precisely
the lax algebras and their lax homomorphisms for the lax extension to Rel of the ultrafilter monad on
Set. (The algebras for the monad itself are the compact Hausdorff spaces.) With this in mind, in recent
years others have studied more generally the lax extension of monads T : Set −→ Set to the category
V-Mat of matrices with elements in a quantale V [CH03, CT03, Sea05]: the lax algebras, often referred to
as (T,V)-categories or (T,V)-algebras in those references, but we shall call them simply T-categories as
in [Hof07], are then to be thought of as “topological categories”. Examples include, beside topological
spaces, also approach spaces, V-enriched categories, metric spaces, multicategories, and more.

Altogether this then raises a natural question: how should we define “T-frames” as the analogue of
frames? Is there any hope for a duality between T-categories and “T-frames”, generalising that between
topological spaces and frames? This is the problem that we address in this paper.
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More exactly, we study the generalisation of the notion of co-frame in the context of T-categories. To
give an idea of the main difficulty, reconsider the definition: a co-frame is a complete ordered set in which
finite suprema distribute over (arbitrary) infima. To translate this statement to the context of V-enriched
categories, we know that infima and suprema will become enriched limits and colimits, and the distribu-
tivity will be expressed by a certain functor being continuous (see e.g. [KS05] for examples in the realm
of enriched categories). But how should we translate the finiteness of the involved suprema/colimits?
This is precisely the point where, besides the categorical data (i.e. the categories enriched in a quantale
V), we must make use of the additional topological data (i.e. the monad T on Set): in Definition 2.3 we
thus propose the notion of “T-supremum” in a V-category, to be thought of as a “finite supremum”, where
the finiteness relates (perhaps not surprisingly) to the notion of compactness relative to the given monad
T , as developed in [Hof07]. (More generally, we define “T-colimits” in Definition 2.6; and a V-category
is T-cocomplete if and only if it is tensored and has T-suprema, cf. Proposition 2.7.) In Definition 2.9 we
then define a “T-frame” to be a complete V-category in which T-suprema suitably distribute over limits.
(Note that we speak of T-frames even though we generalise the notion of co-frames.) Of course, these
notions are so devised that, when applied to V = 2 (= the two-element chain) and T = U (= the ultra-
filter monad), so that T-categories are precisely topological spaces, we eventually recover the ordinary
co-frames, as shown in Proposition 3.5 and further on. For the general case, we show in Corollaries 2.10
and 2.11 that there is a pair of functors

T-Catop

Ω
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T-Frm.

Even though at this point we are unable to prove that these are adjoint, we do show in Proposition 2.12
that there is a natural transformation Id⇒ pt ◦Ω; and in Theorem 2.13 we do prove that the T-categories
for which the comparison X −→ pt(Ω(X)) is surjective, are precisely those which are Cauchy complete,
which is indeed the expected generalisation of sobriety [Law73, CH09].

We see this work as a first step towards an eventual “Stone duality” for T-categories, and hope that by
explaining our ideas, further research on this topic shall be stimulated.

1. The setting: strict topological theories

M. Barr [Bar70] showed in what sense topological spaces can be thought of as algebras: If we write
U : Set −→ Set for the ultrafilter monad, with multiplication m : U ◦ U ⇒ U and unit e : IdSet ⇒

U, then its category of Eilenberg-Moore algebras is precisely that of compact Hausdorff spaces and
continuous maps [Man69]. But U admits a lax extension to Rel, the quantaloid of sets and relations:
define U′ : Rel −→ Rel to agree with U on the objects, and for a relation r : X−→7 Y with projection
maps p : R −→ X and q : R −→ Y put U′(r) = Uq · (U p)◦. Then U′ is still a functor, and the unit
and the multiplication of the ultrafilter monad become oplax natural transformations. Hence (U′,m, e)
is no longer a monad but rather a lax monad. Nevertheless, the lax algebras for (U′,m, e) are precisely
topological spaces, and the lax algebra homomorphisms turn out to be exactly the continuous maps.

This situation can be generalised, not only by considering other monads (T,m, e) : Set −→ Set be-
sides the ultrafilter monad, but also by studying their lax extensions to quantaloids V-Mat of matrices
with elements in a commutative quantale V. (In this paper, V = (V,

∨
,⊗, k) will always stand for a

commutative, unital quantale: (V,
∨

) is a complete lattice, in which the supremum of a family (xi)i∈i is
written as

∨
i xi, together with an associative and commutative operation V × V −→ V : (x, y) 7→ x ⊗ y

with two-sided unit k ∈ V, such that both x ⊗ − and − ⊗ y preserve arbitrary suprema. When one takes



TOWARDS STONE DUALITY FOR TOPOLOGICAL THEORIES 3

V to be the two-element chain, then it turns out that V-Mat is simply Rel, as we explain further on.) The
lax algebras for a lax extension of T to V-Mat are then to be thought of as “topological categories”. Of
course one has to put conditions on the involved monad and quantale to prove results (in fact, to even
define a lax extension and its lax algebras). Over the last decade, several categorical topologists have
considered different conditions on T and V [CH04, Sea05, Sea09]; in this paper we shall use, up to a
slight rephrasing, the notion of strict topological theory as recently put forward in [Hof07].

Definition 1.1. A strict topological theory T = (T,V, ξ) consists of:

(1) a monad T = (T,m, e) on Set (with multiplication m and unit e),
(2) a commutative quantale V = (V,

∨
,⊗, k),

(3) a function ξ : T (V) −→ V,

such that

(a) T sends pullbacks to weak pullbacks and each naturality square of m is a weak pullback (in other
words, T and m satisfy the Bénabou-Beck-Chevalley condition),

(b) (V, ξ) is a T-algebra and the monoid structure on V in (Set,×, 1) lifts to monoid structure on
(V, ξ) in (SetT,×, 1),

(c) writing PV : Set −→ Ord for the functor that sends a function f : X −→ Y to the left adjoint of
the “inverse image” f −1 : VY −→ VX : ϕ 7→ ϕ · f (where VX is the set of functions from X to
V, with pointwise order), the functions ξX : VX −→ VT (X) : f 7→ ξ · T ( f ) (for X in Set) are the
components of a natural transformation (ξX)X : PV ⇒ PV ◦ T .

Regarding condition (b) in the above definition, note that a quantale V is, in particular, a set equipped
with functions V × V −→ V : (x, y) 7→ x ⊗ y and 1 −→ V : ∗ 7→ k (where 1 = {∗} is a generic singleton)
satisfying (diagrammatic) associativity and unit axioms; put briefly, (V,⊗, k) is a monoid in the cartesian
category Set. But now we ask for a function ξ : T (V) −→ V making (V, ξ) a T-algebra, hence it is natural
to require that the functions (x, y) 7→ x⊗ y and ∗ 7→ k are in fact T-homomorphisms, that is, the following
diagrams have to commute:

T (V × V)
T (− ⊗ −)

//

〈ξ · Tπ1, ξ · Tπ2〉
��

T (V)

ξ
��

T (1)

!
��

T (k)
oo

V × V
− ⊗ −

// V 1
k

oo

Put differently, the monoidal structure (V,⊗, k) must lift from Set to the cartesian category SetT of T-
algebras and homomorphisms. Moreover, it then follows – as shown in [Hof07, Lemma 3.2] – that the
closed structure on V, in other words, the “internal hom” defined by x ⊗ y ≤ z ⇐⇒ x ≤ hom(y, z), then
automatically satisfies

T (V × V)
T (hom)

//

〈ξ · Tπ1, ξ · Tπ2〉
��

≥

TV

ξ
��

V × V
hom

// V

Examples 1.2. The leading examples of strict topological theories are:

(1) the trivial theory: For any quantale V we can consider the theory whose monad-part is the identity
monad on Set and for which the required ξ : V −→ V is the identity function. We write this trivial
strict topological theory as IV.
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(2) the classical ultrafilter theory: Let V be the 2-element chain 2 (to be thought of as the “classical
truth values”), and consider the ultrafilter monadU = (U,m, e) on Set. Together with the obvious
function ξ : U(2) −→ 2 this makes up a strict topological theory which we write as U2.

(3) the metric ultrafilter theory: Let V be the quantale ([0,∞],
∧
,+, 0) of extended non-negative real

numbers [Law73], and consider again the ultrafilter monad U = (U,m, e) on Set. Together with
the function

ξ : U([0,∞]) −→ [0,∞], x 7→
∧
{v ∈ [0,∞] | [0, v] ∈ x}

this makes up a strict topological theory, written U[0,∞].
(4) the general ultrafilter theory: If V is any commutative and integral quantale (meaning that a⊗b =

b ⊗ a and that k = >) which is completely distributive, then the ultrafilter monad U = (U,m, e)
on Set together with the function

ξ : U(V) −→ V : x 7→
∧
A∈x

∨
A

is a strict topological theory provided that ⊗ : V × V −→ V is continuous with respect to the
compact Hausdorff topology ξ on V. This generalises the two previous examples; details are in
[Hof07].

(5) the word theory: For any quantale V, the word monad L = (L,m, e) on Set together with the
function

ξ : L(V) −→ V : (v1, . . . , vn) 7→ v1 ⊗ . . . ⊗ vn , ( ) 7→ k

determine a strict topological theory LV.

In what follows we shall write V-Mat for the quantaloid of V-matrices: its objects are sets, an arrow
r : X−→7 Y is a “matrix” whose entries are elements of V, indexed by Y×X. The composition of r : X−→7 Y
with s : Y−→7 Z is s·r : X−→7 Z whose (z, x)-th element is

∨
y∈Y s(z, y)⊗r(y, x); the identity on a set X is the

obvious diagonal matrix, with k’s on the diagonal and ⊥’s elsewhere. It is the elementwise supremum of
parallel matrices that finally makes V-Mat a quantaloid (in fact, it is the free direct-sum completion of V
in the category of quantaloids). As any quantaloid, V-Mat is biclosed (some authors say “left- and right-
closed”, others say simply “closed”), in the sense that for any matrix r : X−→7 Y and any object Z, both
order-preserving functions − · r : V-Mat(Y,Z) −→ V-Mat(X,Z) and r · − : V-Mat(Z, X) −→ V-Mat(Z,Y)
admit right adjoints: we shall write

s · r ≤ t ⇐⇒ s ≤ t � r and r · p ≤ q ⇐⇒ p ≤ r � q

for these liftings and extensions. Finally we mention that mapping a matrix r : X−→7 Y to r◦ : Y−→7 X,
defined by r◦(x, y) := r(y, x), defines an involution (−)◦ : V-Matop −→ V-Mat.

A topological theory T = (T,V, ξ) allows for a lax extension of the functor T : Set −→ Set to a
2-functor Tξ : V-Mat −→ V-Mat as follows: we put TξX = T X for each set X, and

Tξr : TY × T X −→ V : (y, x) 7→
∨{

ξ · Tr(w)
∣∣∣∣ w ∈ T (Y × X),Tπ1(w) = y,Tπ2(w) = x

}
for each V-matrix r : X−→7 Y . Furthermore, we have Tξ (r

◦) = Tξ (r)◦ (and we write Tξr
◦) for each V-matrix

r : X−→7 Y , m becomes a natural transformation m : TξTξ ⇒ Tξ and e an op-lax natural transformation
e : Id⇒ Tξ , i.e. eY · r ≤ Tξr · eX for all r : X−→7 Y in V-Mat.

A V-matrix of the form α : X−→7 TY we call T-matrix from X to Y , and write α : X −⇀7 Y . For T-
matrices α : X −⇀7 Y and β : Y −⇀7 Z we define as usual the Kleisli composition

β ◦ α := mX · Tξβ · α.
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This composition is associative and has the T-matrix eX : X −⇀7 X as a lax identity: a ◦ eX ≥ a and
eY ◦ a = a for any a : X −⇀7 Y .

We now come to the definition of the “topological categories” that we were after in the first place.

Definition 1.3. Let T be a strict topological theory. A T-graph is a pair (X, a) consisting of a set X and
a T-matrix a : X −⇀7 X satisfying eX ≤ a. A T-category (X, a) is a T-graph such that moreover a ◦ a ≤ a.
Given two T-graphs (resp. T-categories) (X, a) and (Y, b), a function f : X −→ Y is a T-graph morphism
(resp. T-functor) if T f · a ≤ b · f . Given two T-categories (X, a) and (Y, b), a T-matrix ϕ : X −⇀7 Y is a
T-distributor, denoted as ϕ : (X, a)−⇀◦ (Y, b), if ϕ ◦ a ≤ ϕ and b ◦ ϕ ≤ ϕ.

Proposition 1.4. Let T be a strict topological theory. T-graphs and T-graph morphisms, resp. T-
categories and T-functors, form a category T-Gph, resp. T-Cat, for the obvious composition and iden-
tities. T-categories and T-distributors between them form a locally ordered category T-Dist, with the
Kleisli convolution as composition and the identity on (X, a) given by a : (X, a)−⇀◦ (X, a).

Examples 1.5. We come back to the theories of Example 1.2:

(1) Trivial theory: For each quantale V, IV-categories are precisely V-categories and IV-functors are
V-functors. As usual, we write V-Cat instead of IV-Cat, V-Gph instead of IV-Gph, and so on.
In particular, V-Cat is the category Ord of ordered sets if V = 2, and for V = [0,∞] one obtains
Lawvere’s category Met of generalised metric spaces [Law73].

(2) Ultrafilter theories: The main result of [Bar70] states that U2-Cat is isomorphic to the category
Top of topological spaces. In [CH03] it is shown that U[0,∞]-Cat is isomorphic to the category
App of approach spaces [Low97].

Since we always have ϕ ◦ a ≥ ϕ and b ◦ ϕ ≥ ϕ, the T-distributor condition above implies equality.
The local order in T-Dist is inherited from V-Mat, but whereas the latter is a quantaloid (i.e. has local
suprema which are stable under composition), the former generally is not. In fact, the matrix-infimum of
distributors is a distributor, but the matrix-supremum of distributors is not necessarily a distributor. It is
easy to see that all liftings (i.e. right adjoints to ψ ◦ −) exist in T-Dist, but the example below shows that
extensions (i.e. right adjoints to − ◦ ψ) needn’t exist.

Lemma 1.6. For any ψ : (Y, b)−⇀◦ (X, a) and (Z, c) in T-Dist1, the order-preserving map

ψ ◦ − : T-Dist((Z, c), (Y, b)) −→ T-Dist((Z, c), (X, a))

admits a right adjoint.

Proof. For any γ : (Z, c)−⇀◦ (X, a) we pass from

X Z◦
γ

o

Y

◦ψ

O
to T X Z�γoo

TT X

_mX

OO

TY

_Tξψ
OO

and put ψ ( γ := (mX · Tξψ) � γ: it is easily verified that ψ ( γ is a T-distributor and satisfies the
required universal property. �

1In fact, this proof also works in the locally ordered category T-URel of so-called unitary T-relations: its objects are sets
and its arrows are those a : X −⇀7 Y for which a ◦ eX = a holds. Kleisli convolution is composition, and the identity on X is eX .
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Example 1.7. Consider the real numbers with their Euclidian topology, RE , and with the discrete topol-
ogy, RD. Then certainly f : RD −→ RE , x 7→ x is continuous. Further one checks that a distributor
θ : RE −⇀◦ E, resp. κ : RD −⇀◦ E, is “the same as” a closed subset of R for the respective topologies, where
E denotes a one-element space. Finally, one finds that θ ◦ f∗ = θ for any θ : RE −⇀◦ E. Because the
supremum of closed subsets in RE is in general different from their supremum in RD (i.e. their union),
we now find that − ◦ f∗ does not necessarily preserve such suprema.

We shall now establish the expected relation between T-functors and T-distributors: each T-functor
induces an adjoint pair of T-distributors (see [CH09]).

Let X = (X, a) and Y = (Y, b) be T-categories and f : X −→ Y be a T-functor. We define T-distributors
f∗ : X −⇀◦ Y and f ∗ : Y −⇀◦ X by putting f∗ = b · f and f ∗ = T f ◦ · b respectively. Hence, for x ∈ T X,
y ∈ TY , x ∈ X and y ∈ Y , f∗(y, x) = b(y, f (x)) and f ∗(x, y) = b(T f (x), y). One easily verifies the rules

f ∗ ◦ ϕ = T f ◦ϕ and ψ ◦ f∗ = ψ · f ,

for T-distributors ϕ and ψ, to conclude that f∗ a f ∗ in T-Dist. One calls a T-category X Cauchy-complete
(Lawvere complete in [CH09]) if every adjunction ϕ a ψ of T-distributors ϕ : Y −⇀◦ X and ψ : X −⇀◦ Y
is of the form f∗ a f ∗, for some T-functor f : Y −→ X. As shown in [CH09], in order to check if X is
Cauchy-complete it is enough to consider the case Y = (1, k!) where k! :=!◦ · k : 1−→7 T1.

Furthermore, we have functors

T-Cat
(−)∗

// T-Dist T-Catop
(−)∗

oo ,

where X∗ = X = X∗ for each T-category X = (X, a). Hence, T-Cat becomes a 2-category via the functor
(−)∗: we define f ≤ g if f∗ ≤ g∗, which is equivalent to g∗ ≤ f ∗. Taking this 2-categorical structure into
account, the second functor above can be written as (−)∗ : T-Catcoop −→ T-Dist.

Let us point out some other 2-functors that are of interest (cf. the diagram in figure 1):

• The forgetful U : T-Cat ↪→ T-Gph has a left adjoint F which is for instance described in [Hof05].
• Each T-category (X, a) has an underlying V-category S(X, a) = (X, e◦X · a). This defines a functor

S: T-Cat −→ V-Cat which has a left adjoint A: V-Cat −→ T-Cat defined by A(X, r) = (X,Tξr ·
eX).
• As observed in [CH09], there is another functor from T-Cat to V-Cat, namely M: T-Cat −→

V-Cat which sends a T-category (X, a) to the V-category (T X,mX · Tξa). This functor shall only
be needed to define the dual of a T-category (see further) and is not pictured in the diagram.
• Each Eilenberg–Moore T-algebra (X, α) can be considered as a T-category by regarding the

function α : T X −→ X as a V-matrix α◦ : X−→7 T X. This defines a functor D: SetT −→ T-Cat,
whose composition with Set −→ SetT we denote as | − | : Set −→ T-Cat.

We shall now discuss some further properties of these functors, especially concerning monoidal structure.
The tensor product ⊗ on V has a canonical lifting to V-Mat:one puts X⊗Y = X×Y , and for V-matrices

a : X −→ Y and b : X′ −→ Y ′ one defines

(a ⊗ b)((x, x′), (y, y′)) = a(x, y) ⊗ b(y, y′).

Clearly, any one element set 1 is neutral for this tensor product. Then Tξ : V-Mat −→ V-Mat together
with the natural transformation m : TξTξ ⇒ Tξ and the op-lax natural transformation Id ⇒ Tξ becomes
a lax Hopf monad on (V-Mat,⊗, 1) in the sense that we have maps τX,Y : T (X × Y) −→ T X × TY and
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T-Gph

F

��
::::::::::::

V-Cat
A

//
T-Cat

(−)∗
//

U

\\::::::::::::

S
oo Map(T-Dist)

Set

| − |

BB������������
//
SetToo

D

[[77777777777

Figure 1. Some (2-)functors of interest

! : T1 −→ 1 so that the diagrams

T (X ⊗ Y)

_Tξ (r ⊗ s)
��

τX,Y
// T X ⊗ TY

_ Tξr ⊗ Tξ s
��

T (X′ ⊗ Y ′)
τX′,Y′

// T X′ ⊗ TY ′

and T1
!

//

_Tξk
��

1
_ k
��

T1
!

// 1

commute in V-Mat. Hence, we cannot speak of a Hopf monad (see [Moe02]) only because (Tξ ,m, e) is just
a lax monad on V-Mat. This additional structure permits us to turn also T-Cat into a tensored category:
for T-categories (or, more general, T-graphs) X = (X, a) and Y = (Y, b) we define X ⊗ Y = (X × Y, c)
where c = τ◦X,Y · (a⊗ b). Explicitly, for w ∈ T (X × Y), x ∈ X, y ∈ Y , x = Tπ1(w) and y = Tπ2(w) we have

c(w, (x, y)) = a(x, x) ⊗ b(y, y).

The T-category E = (1, k!), with k! : =!◦ · k : 1−→7 T1, is neutral for ⊗. This tensor product and its
properties are studied in [Hof07] (unfortunately, without mentioning the concept of a Hopf monad). The
functors introduced above have now the following properties: A: V-Cat −→ T-Cat and M: V-Cat −→
T-Cat are op-monoidal 2-functors, S : T-Cat −→ V-Cat is a strong monoidal 2-functor and D: SetT −→
T-Cat is a strong monoidal functor.

Another important feature of a topological theory is that it allows us to consider V as a T-category
V = (V, homξ), where

homξ : TV × V −→ V, (v, v) 7→ hom(ξ(v), v).

Note that V = (V, homξ) is in general not isomorphic to A(V, hom). Furthermore, V is a monoid in
(T-Cat,⊗, E) since both k : E −→ V and ⊗ : V ⊗ V −→ V are T-functors. Through the strong monoidal
2-functor S: T-Cat −→ V-Cat, this specialises to the usual monoid structure on V in V-Cat. We also
remark that ξ : |V| −→ V becomes now a T-functor.

We finish this section by presenting a characterisation of T-distributors as V-valued T-functors, gener-
alising therefore a well-known fact about V-categories. This result involves the dual category, a concept
which has no obvious T-counterpart. However, the following definition (see [CH09]) proved to be useful:
given a T-category X = (X, a), one puts

Xop = A(M(X)op).

Theorem 1.8 ([CH09]). For T-categories (X, a) and (Y, b), and a T-matrix ψ : X −⇀7 Y, the following
assertions are equivalent.

(i) ψ : (X, a)−⇀◦ (Y, b) is a T-distributor.
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(ii) Both ψ : |Y | ⊗ X −→ V and ψ : Yop ⊗ X −→ V are T-functors.

In particular, since a : X −⇀◦ X for each T-category X = (X, a), we have two T-functors

a : |X| ⊗ X −→ V and a : Xop ⊗ X −→ V.

The theorem above, together with the condition T1 = 1, can now be used to construct the Cauchy-
completion y: X −→ X̃ of a T-category X, where X̃ has as objects

{ψ ∈ T-Dist(E, X) | ψ is left adjoint}

and y is the Yoneda embedding x 7→ x∗. For details we refer to [HT10].

Examples 1.9. We consider first V = [0,∞], hence V-category means (generalised) metric space. In
[Law73] F.W. Lawvere has shown that equivalence classes of Cauchy sequences in a metric space X
correspond precisely to left adjoint [0,∞]-distributors ψ : E−→◦ X, and a Cauchy sequence converges to
x if and only if x is a colimit of the corresponding [0,∞]-distributor. Hence, Cauchy completeness has
the usual meaning and X̃ describes the usual Cauchy completion of a metric space.

In [HT10] it is shown that the topological space (= U2-category) X̃ is homeomorphic to the space of
all completely prime filters on the lattice τ of open subsets of X, and y: X −→ X̃ corresponds to the map
which sends x ∈ X to its neighbourhood filter. Of course, one can equivalently consider right adjoint
U2-distributors ϕ : X −⇀◦ E, and in [CH09] it is shown that a U2-distributors ϕ : X −⇀◦ E is right adjoint if
and only if ϕ : X −→ 2 is the characteristic map of an irreducible closed subset A of X, and ϕ = x∗ if and
only if A = {x}. Hence, a topological space X is Cauchy complete if and only if X is weakly sober.

2. T-categories versus T-frames

Recall from the Introduction that Ω : Topop −→ Frm is the functor that sends any topological space X
to the frame Ω(X) of its open subsets, and any continuous function f : X −→ Y to the frame homomor-
phism Ω( f ) : Ω(Y) −→ Ω(X) given by inverse image. It is straightforward to see that Ω(X) is isomorphic
(qua ordered set) to Top(X, S ), where S is the Sierpinski space, topological spaces are considered with
their specialisation order (which continuous functions preserve), and Top(X, S ) is ordered pointwise. In
fact, modulo these isomorphisms, Ω : Topop −→ Frm is simply a corestriction of the representable func-
tor Top(−, S ) : Topop −→ Ord. Further recall that the left adjoint to Ω, pt : Frm −→ Topop, is also defined
by means of a representable, namely Frm(−, 2). It is now noteworthy that the specialisation order of the
Sierpinski space S is precisely the two-element chain 2 = {0 ≤ 1}, and conversely S is the Alexandrov
topology on 2. For this reason, some have called the two-point set {0, 1} a dualising object in this situa-
tion: it can be endowed with two different structures, the Sierpinski topology and the total order, making
it objects of two different categories, topological spaces and frames, and represents a duality between
these categories [PT91].

This analysis now suggests our method to define the category of “T-frames” in the general context of
T-categories, as follows. For any strict topological theory T = (T,V, ξ), the quantale V naturally bears the
structure of a T-category; thus we have the representable functor T-Cat(−,V) : T-Catop −→ V-Cat. Now
we devise a category T-Frm of “T-frames” and “T-frame homomorphisms” in such a way2 that (i) the
representable T-Cat(−,V) : T-Catop −→ V-Cat corestricts to a functor Ω : T-Catop −→ T-Frm, and (ii) V
is an object of T-Frm representing a functor pt : T-Frm −→ T-Catop. Ideally, these functors should then
be adjoint, but for now we are unable to prove this. However, we do show a natural comparison ηX : X −→

2At this point we should mention that, specialised to the topological case, V = 2 becomes the Sierpinski space with {1}
closed so that Top(X, 2) is naturally isomorphic to the co-frame of closed subsets of X. Nevertheless, we prefer to use the term
“T-frame” in the sequel.
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pt(Ω(X)) for any T-category X, and we prove that X is a Cauchy complete T-category (amounting to
sobriety in the case of T0 topological spaces) if and only if ηX is surjective.

For technical reasons we shall from now on assume that T1 = 1. Together with Theorem 1.8 this
implies that a T-distributor ϕ : X −⇀◦ E is “the same thing as” a T-functor ϕ : X −→ V (recall that E is the
unit for the tensor product in T-Cat). Furthermore, for any α : X −⇀7 E,

− ◦ α : T-Mat(E, E) −→ T-Mat(X, E)

has a right adjoint (−) � α calculated as in V-Mat, due to Tξv = v (for any v : 1−→7 1). Unfortunately, the
condition T1 = 1 excludes Example 1.2 (5).

Lemma 2.1. The following assertions hold.

(1)
∧

: VI −→ V is a T-functor, for each index set I.
(2) hom(v,−) : V −→ V is a T-functor, for each v ∈ V.
(3) v ⊗ − : V −→ V is a T-functor, for each v ∈ V.

It is now straightforward that the representable functor T-Cat(−,V) : T-Catop −→ Ord lifts to a functor
V− : T-Catop −→ V-Cont by putting VX to be the full sub-V-category of P(S X) (i.e. the usual V-category
of covariant V-presheaves on S X, the “specialisation” V-category underlying the T-category X) deter-
mined by the elements in T-Cat(X,V). Clearly, a T-functor f : X −→ Y (with Y being a T-category)
induces a V-functor V f : VY −→ VX which preserves infima, tensors and cotensors, i.e. all weighted lim-
its. Being complete, VY is also cocomplete, but suprema are typically not computed pointwise and hence
in general not preserved by V f . However, a particular class of suprema are preserved by V f , as we show
next.

Proposition 2.2 ([Hof07]). Let X be a T-category. Then X is compact if and only if
∨

: VX −→ V is a
T-graph morphism. In particular,

∨
: VX −→ V is a T-functor for each T-algebra X.

Here a T-category X = (X, a) is called compact if k ≤
∨
{a(x, x) | x ∈ X}, for every x ∈ UX. For

topological spaces, compact has the usual meaning, and an approach space is compact if and only if
its measure of compactness is 0 (see [Low97]). Also note that every V-category is compact. In the
proposition above, VX is the T-graph with structure matrix ~−,−� defined as

~p, ϕ� =
∧

q∈T (X×YX),x∈X
q7→p

hom(a(Tπ1(q), x), hom(ξ · Tev(q), ϕ(x))).

In fact, we apply here to V the right adjoint (−)X of X ⊗ − : T-Gph −→ T-Gph (see [Hof07]). Note
that we use here the same notation VX for the T-graph and the V-category (defined on the same set of
objects). However, if p = eVX (ϕ′) with ϕ′ ∈ VX in the formula above, then

~eVX (ϕ′), ϕ� =
∧
x∈X

hom(ϕ′(x), ϕ(x)) = ϕ� ϕ′ = [ϕ′, ϕ],

i.e. the underlying V-graph of the T-graph VX is actually the V-category VX described above. As a
consequence, if ϕ′ : X −⇀◦ E has a left adjoint ψ : E −⇀◦ X in T-Dist, then

~eYX (ϕ′), ϕ� = ϕ ◦ ψ.

Proposition 2.2 suggests now the following new notions.

Definition 2.3. Let A = (A, a) and B = (B, b) be T-graphs whose underlying V-graphs are V-categories;
for shorthand, we will write A (resp. B) for both the T-graph and the underlying V-category. A V-functor
f : A −→ B is said to be T-compatible if, for each T-algebra I and each T-graph morphism h : I −→ A,
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the composite f · h is a T-graph morphism as well. By a T-diagram in A we mean a T-graph morphism
D : I −→ A where I is a T-algebra; and a supremum of a T-diagram is a T-supremum. Finally, we say
that a T-compatible V-functor Φ : A −→ B preserves T-suprema if Φ preserves suprema of T-diagrams.

Proposition 2.4. For every T-functor f : X −→ Y, the V-functor V f : VY −→ VX underlies a T-graph
morphism, and hence is T-compatible. Moreover, V f preserves T-suprema (but in general not all sup-
rema).

Remark 2.5. We consider the Yoneda morphism y: X −→ X̃. Then Vy : VX̃ −→ VX is an isomorphism
of V-categories, where Vy sends ϕ̃ : X̃ −→ V to its restriction ϕ : X −→ V. In fact, when considering ϕ, ϕ̃
as T-distributors ϕ : E −⇀◦ X and ϕ̃ : E −⇀◦ X̃, we have ϕ̃ = y∗ ◦ϕ resp. ϕ = y∗ ◦ϕ̃. Hence, since y∗ a y∗ is
an equivalence of T-distributors,

ϕ̃� ψ̃ = ϕ� ψ

for all ϕ̃, ψ̃ : X̃ −→ V. Its inverse Φ : VX −→ VX̃ , ϕ −→ ϕ̃ certainly preserves all suprema. Moreover, Φ

is T-compatible. To see this, let h : I −→ VX be a T-graph morphism where I is a T-algebra. Since V is
injective with respect to fully faithful T-functors, we have an (in fact unique) extension l : X̃ ⊗ I −→ V
of xhy : X ⊗ I −→ V along y⊗ idI : X ⊗ I −→ X̃ ⊗ I. Then plq(i) · y = h(i) for each i ∈ I, and therefore
plq = Φ · h.

Definition 2.6. Assume that the underlying V-category of A has all tensors. A T-weighted diagram in A
is given by a set I together with a T-algebra structure α : T I −→ I and a V-category structure r : I−→7 I,
a V-functor h : I −→ A and a V-distributor ψ : 1−→◦ I such that the map

I −→ A, i 7→ ψ(i) ⊗ h(i)

is a T-graph morphism. The colimit of a T-weighted diagram in A is called a T-colimit, and A is T-
cocomplete if all T-colimits exist in A. A V-distributor ϕ : 1−→◦ A is called T-generated if ϕ = h∗ · ψ in
V-Dist, for h and ψ as above.

Proposition 2.7. The following assertions are equivalent, for a T-graph A = (A, a) where S A is a V-
category.

(i) A is T-cocomplete.
(ii) A has all tensors and all T-suprema.

(iii) Each T-generated V-distributor ϕ : 1−→◦ A ∈ P(A) has a supremum supA(ϕ) in A.

Note that a T-compatible and tensor-preserving V-functor f : A −→ B sends T-weighted diagrams in
A to T-weighted diagrams in B. In fact, we have

Proposition 2.8. Let A and B be T-graphs whose underlying V-categories are T-cocomplete, and let
f : A −→ B be a T-compatible V-functor which preserves tensors. Then f preserves T-colimits if and
only if f preserves T-suprema.

Based on the considerations above, we now propose a T-equivalent for the concept of a co-frame (but
note that we call these “T-frames” and not “T-co-frames”):

Definition 2.9. T-Frm is the locally ordered category with:

objects: T-frames, i.e. T-graphs A whose underlying V-graph is a complete V-category satisfying
the following distributivity law: for any distributor ϕ : I−→◦ 1 and functor h : I −→ PA such that
h(i) is T-generated for all i ∈ I, if lim(ϕ, h) is T-generated then supA(lim(ϕ, h)) = lim(ϕ, supA· h).
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morphisms: T-frame homomorphisms, i.e. T-compatible V-functors between the underlying V-
categories of T-frames, that furthermore preserve weighted limits and T-weighted colimits.

By construction, we have a canonical forgetful functor T-Frm −→ V-Cont. Earlier we already ex-
plained that V ∈ T-Cat and that the representable functor T-Cat(−,V) : T-Catop −→ Ord lifts to a
functor V− : T-Catop −→ V-Cont. Now we can prove:

Corollary 2.10. The functor V− : T-Catop −→ V-Cont factors through the forgetful functor T-Frm −→
V-Cont; we call the resulting functor Ω : T-Catop −→ T-Frm.

Proof. For each T-functor f : X −→ Y , the underlying V-graph of the T-graph VX is a complete V-
category, and V f : VY −→ VX is a T-graph morphism which preserves all weighted limits and all T-
weighted colimits. Furthermore A = VX satisfies the distributivity axiom in Definition 2.9 since the
presheaf V-category P(S X) is completely distributive, and A is closed in P(S X) under weighted limits
and T-weighted colimits. �

Since V ∈ T-Frm, we certainly have a representable functor T-Frm(−,V) : (T-Frm)op −→ Ord. But
there is more:

Corollary 2.11. The functor T-Frm(−,V) : (T-Frm)op −→ Ord lifts to a functor pt : (T-Frm)op −→

T-Cat.

Proof. This is done by putting on T-Frm(X,V) the largest T-category structure that makes all evaluation
maps evX,x : T-Frm(X,V) −→ V, h 7→ h(x) into T-functors. �

Note how, in the two previous corollaries, V plays the role of a dualising object: it is on the one hand
an object of T-Cat, and as such represents the functor Ω : T-Catop −→ T-Frm; but it is also an object of
T-Frm, and as such represents the functor pt : (T-Frm)op −→ T-Cat. Next we observe:

Proposition 2.12. There is a natural transformation η : Id⇒ pt ·Ω with components

ηX : X −→ pt(Ω(X)), x 7→ evX,x for X ∈ T-Cat.

We do not know whether ηX is always fully faithful, but we do have the following result (recall that E
is the unit for the tensor in T-Cat):

Theorem 2.13. For any X ∈ T-Cat, pt(Ω(X)) has the same objects as the Cauchy completion X̃ of X.
In fact, we have an isomorphism Map(T-Dist)(E, X) −→ T-Frm(Ω(X),V) of ordered sets, making the
diagram

X

(−)∗

~~}}}}}}}}}}}}
ηX

��
===========

Map(T-Dist)(E, X) // T-Frm(Ω(X),V)

commute. Hence X is Cauchy complete if and only if ηX is surjective.

The proof of the theorem above is the combination of the results below.

Lemma 2.14. Let X = (X, a) be a T-category and ϕ : X −→ V be a T-functor. Then the representable
V-functor Φ = [ϕ,−] : Ω(X) −→ V is also a T-graph morphism and preserves infima and cotensors.
Moreover, if ψ a ϕ in T-Dist, then Φ preserves also tensors and T-suprema.
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Proof. Being a representable V-functor, Φ preserves infima and cotensors. To see that Φ is a T-graph
morphism, recall first that

[ϕ, ϕ′] =
∧
x∈X

hom(ϕ(x), ϕ′(x)).

Since
∧

: VXD −→ V (with XD = (X, eX) being the discrete T-category) is a T-graph morphism, it is
enough to show that

Ψ : VX −→ VXD , ϕ′ 7→ hom(ϕ(−), ϕ′(−))

is a T-graph morphism. But Ψ is just the mate of the composite

XD ⊗ VX ∆⊗id
−−−−→ XD ⊗ X ⊗ VX ϕ⊗ev

−−−−→ VD ⊗ V
hom
−−−→ V

of T-graph morphisms.
Assume now ψ a ϕ in T-Dist. Then, for any ϕ′ : X −→ V and v ∈ V,

[ϕ, v ⊗ ϕ′] = (v ⊗ ϕ′) ◦ ψ = (v ◦ ϕ′) ◦ ψ = v ◦ (ϕ′ ◦ ψ) = v ⊗ [ϕ, ϕ′].

Finally, to see that [ϕ,−] preserves T-suprema, we assume X to be Cauchy complete. Let D : I −→
VX , i 7→ ϕi be a T-diagram. Then, since ϕ = a(eX(x),−) for some x ∈ X,

[ϕ,
∨
i∈I

ϕi] = [a(eX(x),−),
∨
i∈I

ϕi] =

∨
i∈I

ϕi

 (x) =
∨
i∈I

ϕi(x) =
∨
i∈I

[ϕ, ϕi]. �

Hence ψ 7→ [ϕ,−] where ψ a ϕ defines a map Map(T-Dist)(E, X) −→ T-Frm(Ω(X),V), which is
clearly injective and hence, by definition, an order-embedding. Before stating our next result, we recall
that ϕ =

∨
x∈T X(a(x,−) ⊗ ξ · Tϕ(x)) for each T-functor ϕ : X −→ V.

Proposition 2.15. Let X = (X, a) be a T-category and Φ : Ω(X) −→ V be a V-functor. Then the following
assertions are equivalent.

(i) Φ = [ϕ,−] for some right adjoint T-distributor ϕ : X −⇀◦ E.
(ii) Φ preserves infima, tensors, cotensors and T-suprema.

(iii) Φ preserves infima, tensors, cotensors and, for each ϕ ∈ VX ,

Φ(ϕ) =
∨
x∈T X

Φ(a(x,−) ⊗ ξ · Tϕ(x)).(*)

Proof. (i)⇒(ii): Follows from the lemma above.
(ii)⇒(iii): It is enough to observe that

|X| ⊗ X −→ V, (x, x) 7→ a(x, x) ⊗ ξ · Tϕ(x)

is a T-functor since it can be written as the composite

|X| ⊗ X
∆⊗idX
−−−−−→ |X| ⊗ |X| ⊗ X

Tϕ⊗a
−−−−→ |V| ⊗ V

ξ⊗idX
−−−−→ V ⊗ V

⊗
−→ V

of T-functors.
(iii)⇒(i): Since Φ : VX −→ V preserves infima and cotensors, Φ is representable by some ϕ ∈ VX , i.e.
Φ = [ϕ,−]. Hence, by the lemma above, Φ is a T-graph morphism. We put ψ : = Φ · paq,

|X|, Xop
paq

//

ψ
##GGGGGGGGG VX

Φ
��

V

then ψ : E −⇀◦ X is a T-distributor by Theorem 1.8. We have, for any x ∈ T X and x ∈ X,

ψ(x) ⊗ ϕ(x) = [ϕ, a(x,−)] ⊗ ϕ(x) ≤ hom(ϕ(x), a(x, x)) ⊗ ϕ(x) ≤ a(x, x).
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On the other hand, ∨
x∈T X

ψ(x) ⊗ ξ · Tϕ(x) =
∨
x∈T X

[ϕ, a(x,−)] ⊗ ξ · Tϕ(x)

=
∨
x∈T X

[ϕ, a(x,−) ⊗ ξ · Tϕ(x)]

= [ϕ,
∨
x∈T X

a(x,−) ⊗ ξ · Tϕ(x)]

= [ϕ, ϕ]

≥ k,

we have shown that ψ a ϕ. �

We conclude that the map Map(T-Dist)(E, X) −→ T-Frm(Ω(X),V), ψ 7→ [ϕ,−] is actually bijective.
Finally, for any x ∈ X and each T-functor ϕ : X −→ V, we have

[x∗, ϕ] = ϕ ◦ x∗ =
∨
x∈T X

a(x, x) ⊗ ξ · Tϕ(x) = ϕ(x) = evX,x(ϕ),

which proves the commutativity of the diagram in Theorem 2.13.

3. Examples

We consider first the identity theory for an arbitrary quantale V, cf. Example 1.2 (1); in this case,
T-Cat = V-Cat is the category of V-enriched categories. A T-diagram is just an ordinary diagram, and
therefore T-Frm is the 2-category having as objects complete (and cocomplete) completely distributive
V-categories, and as morphisms all limit- and colimit-preserving functors between them. Writing V-Frm
for this category, we do have an adjunction

(V-Cat)op
⊥

Ω

55

pt
uu

V-Frm,

and ηX : X −→ pt(Ω(X)) is fully faithful for each V-category X. The latter is a consequence of the well-
known fact that V is initially dense in V-Cat (see [Tho07], for instance), i.e. for each V-category X the
source V-Cat(X,V) is initial (jointly fully faithful).

In particular, for V = 2 (the two-element chain), the adjunction above specialises to ordered sets and
completely distributive complete lattices

Ordop
⊥

Ω

55

pt
uu

CCD

which restricts to a dual equivalence between Ord and the category TAL of totally algebraic complete
lattices and suprema and infima preserving maps. And for V = [0,∞] (the extended non-negative real
numbers) we obtain an adjunction

Metop
⊥

Ω

55

pt
uu

CDMet

where CDMet denotes the category of completely distributive metric spaces and limit- and colimit-
preserving contraction maps. This adjunction restricts to a dual equivalence between the full subcat-
egories of Cauchy complete metric spaces and totally algebraic metric spaces respectively. Here a metric
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space X is completely distributive if it is cocomplete and the left adjoint S : [0,∞]Xop
−→ X of the

Yoneda embedding yX : X −→ [0,∞]Xop
has a further left adjoint tX : X −→ [0,∞]Xop

. Furthermore, a
completely distributive metric space X is totally algebraic if S restricts to an isomorphism [0,∞]Aop

� X
where A ↪→ X is the equaliser of yX and tX . We refer to [Stu07] where complete distributivity and
algebraicity are investigated in the context of quantaloid-enriched categories.

Finally, in the remainder of this section we consider the ultrafilter theories of Example 1.2 (2–4);
below we denote such a theory as U. As recalled in Example 1.5, if the underlying quantale is V = 2,
then U2-Cat = Top is the category of topological spaces; and if V = [0,∞], then U[0,∞]-Cat = App is the
category of approach spaces. Our aim is to show how, in general, the notion of U-supremum captures
precisely a finiteness condition; so that, consequently, the distributivity law for a U-frame expresses that
finite suprema must distribute over arbitrary infima. To prove this, we start with a well-known lemma
providing a crucial tool when working with ultrafilters (a proof can be found in [Joh86], for instance):

Lemma 3.1. Let X be a set, j be an ideal and f be a filter on X with f ∩ j = ∅. Then there exists an
ultrafilter x ∈ UX with f ⊆ x and x ∩ j = ∅.

For any U-category X = (X, a) and any A ⊆ X, the map ϕA : X −→ V : x 7→
∨
{a(a, x) | a ∈ U(X), A ∈ a}

is in fact a U-functor: for it is the composite

X
paq
−−→ V|X| −→ V|A|

∨
−→ V

of U-functors. Note also that, for x ∈ UX and A ∈ x, ξ · UϕA(x) ≥ k. Recall further that Uξ is the lax
extension of the ultrafilter monad to V-Mat. In the following proofs we shall write � for the totally
below relation of V.

Lemma 3.2. Let X = (X, a) be a U-category. For x ∈ UX and x ∈ X,∧
{ϕA(x) | A ∈ x} =

∨
{Uξa(X,

�
x) | X ∈ UUX, mX(X) = x}.

Proof. Clearly, Uξa(X,
�
x) ≤ a(x, x) ≤ hom(ξ · UϕA(x), ϕA(x)) ≤ ϕA(x) for X ∈ UUX with mX(X) = x and

A ∈ x. Let now u ∈ V with u �
∧

A∈x ϕA(x). Putting j = {B ⊆ UX | ∀y ∈ B . u 6≤ a(y, x)} defines an
ideal disjoint from x# = {UA | A ∈ x}. Let X ∈ UUX be an ultrafilter with x# ⊆ X and X ∩ j = ∅. Then
mX(X) = x and Uξa(X,

�
x) =

∧
A∈X

∨
a∈A a(a, x) ≥ u. �

Corollary 3.3. Let X = (X, a) be a U-category, x ∈ UX and x ∈ X. Then a(x, x) =
∧
{ϕA(x) | A ∈ x}.

Proof. Because a(x, x) =
∨
{Uξa(X,

�
x) | X, mX(X) = x} =

∧
{ϕA(x) | A ∈ x}. �

Corollary 3.4. For each U-category X, the source U-Cat(X,V) is initial (i.e. jointly fully faithful).

We can now show how the ultrafilter monad allows us to capture a finiteness condition, under some
strong assumptions on V:

Proposition 3.5. Assume that the quantale V satisfies > = k, {u ∈ V | u � k} is directed and k ≤ u ∨ v
implies k ≤ u or k ≤ v, for all u, v ∈ V. Let Φ : Ω(X) −→ V be a V-functor which preserves infima,
tensors and cotensors. Then Φ preserves U-suprema if and only if Φ preserves finite suprema.

Proof. Clearly, if Φ preserves U-suprema then Φ preserves finite suprema. Assume now that Φ preserves
finite suprema, we have to show (*) in Proposition 2.15. Note that Φ is necessarily of the form Φ = [ϕ,−],
for some ϕ ∈ Ω(X). Furthermore, by our conditions on V and since Φ preserves finite suprema, ϕ ≤
ϕ1 ∨ ϕ2 implies ϕ ≤ ϕ1 or ϕ ≤ ϕ2, for ϕ1, ϕ2 ∈ Ω(X). We start by showing that there exists an ultrafilter
x ∈ UX with ϕ = a(x,−) and k = ξ ·Uϕ(x). This generalises a well-known property of irreducible closed



TOWARDS STONE DUALITY FOR TOPOLOGICAL THEORIES 15

subsets of a topological space as well as of approach prime elements in the regular function frame of an
approach space (see Proposition 5.7 of [BLVO06]).

To this end, note first that k =
∨
{ϕ(x) | x ∈ X}. In fact, with u =

∨
{ϕ(x) | x ∈ X}, one has

k = Φ(ϕ) ≤ Φ(u) = u. Let now u � k and put Au = {x ∈ X | u ≤ ϕ(x)}. We show that ϕ ≤ ϕAu . Consider
the set A = {x ∈ X | ϕ(x) ≤ ϕAu(x)} and put v =

∨
{ϕ(x) | x ∈ X, x < A}. One has Au ⊆ A, and therefore

k , v since otherwise there would exist some x ∈ X with u ≤ ϕ(x) and x < A. Consequently, ϕ 6≤ ϕ ∧ v.
By definition, ϕ ≤ ϕAu ∨ (ϕ ∧ v), and we conclude ϕ ≤ ϕAu . We have shown that the filter base

f = {Au | u � k}

is disjoint from the ideal
j = {B | ϕ 6≤ ϕB},

and therefore Lemma 3.1 provides us with an ultrafilter x ∈ UX with x ∩ j = ∅. Hence,

a(x, x) =
∧
A∈x

ϕA(x) ≥ ϕ(x)

Furthermore, for any u � k,

ϕAu(x) =
∨
y∈UAu

a(y, x) ≤
∨
y∈UAu

hom(ξ · Uϕ(y), ϕ(x)) ≤ hom(u, ϕ(x)),

and therefore
a(x, x) ≤

∧
u�k

ϕAu(x) ≤
∧
u�k

hom(u, ϕ(x)) = hom(
∨
u�k

u, ϕ(x)) = ϕ(x).

Let now ϕ′ ∈ Ω(X). Since Φ(ϕ′) = [ϕ, ϕ′], one has Φ(ϕ′) ⊗ ϕ(x) ≤ ϕ′(x) for every x ∈ X. Finally

Φ(a(x,−))⊗ξ ·Uϕ′(x) = ξ ·Uϕ′(x) =
∧
A∈x

∨
x∈A

ϕ′(x) ≥
∧
A∈x

∨
x∈A

Φ(ϕ′)⊗ϕ(x) ≥ Φ(ϕ′)⊗ξ ·Uϕ(x) = Φ(ϕ′). �

As a consequence, in the situation of the proposition above we can modify our definition of U-Frm
(see Definition 2.9) by replacing U-algebra with finite (and hence discrete) U-algebra everywhere; and
we do not need the U-graph structure anymore.

In particular, for V = 2 we thus find that the objects of U2-Frm are complete ordered sets satisfying
the co-frame law, and the morphisms are order-preserving maps which preserve all infima and finite
suprema. In other words, we arrive at the usual category of co-frames and co-frame homomorphisms. It
is well-known (as we recalled in Section 2) that it is involved in a dual adjunction with U2-Cat = Top.
The situation is similar for V = [0,∞]. In this case a U[0,∞]-frame is a complete (that is, one admitting
all weighted limits and colimits; not to be confused with Cauchy complete) metric space where “finite
colimits commute with arbitrary limits”, and a homomorphism is a contraction map preserving all limits
and finite colimits. Our perspective differs here from [BLVO06] where so-called “approach frames” were
introduced as certain algebras; so far we do not know if both notions are equivalent and therefore leave
this as an open problem.
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